

1

 www.logofoundation.org

Conversations with Logo

(as overheard by Michael Tempel)

© 1989 LCSI

© 1991 Logo Foundation

You may copy and distribute this document for educational purposes provided that you do not

charge for such copies and that this copyright notice is reproduced in full.

PART I

Person: I'm having some trouble with my Logo: program.

Logo: What seems to be the problem?

Person: Well, I'm trying to position the turtle at some random place on the screen.

Logo: That's easy enough. Go ahead.

Person: setpos [random 80 random 80]

Logo: setpos doesn't like [random 80 random 80] as input

Person: Why not?

Logo: Because setpos likes a list of two numbers as input. It uses the first number to set the

turtle's x-coordinate and the second number to set the y-coordinate.

Person: I know that. Sometimes it works. For example,

setpos [50 50]

There. The turtle moved up and to the right.

Logo: Of course.

Person: Of course. So when I say setpos [random 80 random 80] I'm giving setpos a list of

two numbers, only I'm asking random to pick them for me. Right?

Logo: Wrong. You're giving setpos a list of four words, not two numbers.

http://www.logofoundation.org/

2

Person: Huh? What four words?

Logo: random, 80, random and 80

Person: But that's not what I mean. I want each random 80 to report a number. They're in a list

because of the brackets so setpos should be happy.

Logo: Well that's not how I do things, but if you want, I can change the way I interpret what

you say.

Person: Can you?

Logo: Sure. Try your random position setting now.

Person: setpos [random 80 random 80]

Logo: There. Is that what you wanted?

Person: Yes! The turtle moved and you didn't complain. Thanks.

Logo: By the way, what's your program about?

Person: It's a tutorial to explain to people how you work.

Logo: That's a good thing to do. Lots of folks don't seem too clear about what I'm doing. Can

you show me some of it?

Person: Sure. It begins like this

to tutor

print [Forward 50 draws a line.]

print [Try it for yourself.]

end

Logo: OK, let's see it work.

Person: tutor

Logo: I don't know how to draws in tutor

Person: Wait a minute! What's going on here. This worked earlier today! Now you're

complaining that you don't know how to draws! And why did the turtle draw that line

on the screen?

Logo: What did you want to happen?

Person: I just wanted that text to appear on the screen. That's why I used the print command.

Logo: Oh. Well, that's what used to happen, but you asked me to change things so that setpos

would work the way you want it to.

Person: I didn't ask you to mess with print!

3

Logo: Well, I can't do it both ways. We'll have to decide.

Person: Do what both ways? I'm confused.

Logo: I can either evaluate what's inside a bracketed list or not. I never used to, which is why

setpos [random 80 random 80] didn't work. Even though random is the name of a

procedure, when it's in a bracketed list I just take it literally as a word. I don't run the

procedure. This makes setpos unhappy. On the other hand, that seems to be what you

want when you use print. When I evaluated what was inside the brackets I asked the

turtle to draw a line because the first two words in the list were forward 50; they make

a perfectly good command. Then, I found a word that wasn't the name of a procedure so

I complained. Would you prefer that I just take all those words literally?

Person: Well, I suppose so. But wait a minute! Sometimes you do run procedures in bracketed

lists. What about when I say repeat 4 [forward 50 right 90]? You draw a square.

Logo: I don't run what's inside the brackets, repeat does. That's her job. She runs lists. Print

handles lists differently. He puts their contents on the screen. I don't do anything to

bracketed lists. I just make sure that they're delivered to the procedures they're intended

for.

Person: OK. But I still have to set the turtle at random positions for my program to work.

Logo: It can be done. You could . . .

Person: I know! I could write a procedure, let's call it setxy, that takes two numbers as inputs.

So, I could say setxy 50 50 instead of setpos [50 50]. Then setxy random 80 random

80 should work. Since the randoms aren't in brackets, they'll be run. Each random will

report a number to setxy. Right?

Logo: Right. In fact there are some versions of Logo: that have a setxy primitive that works

just that way.

Person: OK, here's my procedure

to setxy :x :y

setpos [:x :y]

end

Let me try it with some actual numbers first before trying it with random.

Logo: Go ahead.

Person: setxy 50 50

Logo: setpos doesn't like [:x :y] as input in setxy

Person: Gimme a break! What's the problem now?

Logo: It's the same problem. Your procedure handed setpos a list of two words that aren't

numbers. Setpos needs a list of two numbers as input. He's very picky about these

4

things.

Person: I gave him a list of two numbers, the value of x and the value of y. Those were numbers

because I used numbers as inputs to setxy. Right?

Logo: Wrong. Setpos got a list of two words as input. The first word was :x and the second

word was :y. Each of them is a two character word which isn't a number. Since these

words were in a bracketed list I left them alone.

Person: I see. So, there are two rules here. You don't run procedures if their names are inside a

bracketed list and you don't find the values of variables if they're inside a bracketed list.

Right?

Logo: Actually there's only one rule, the first one. Did you know that you never really have to

use : at all? It's just an abbreviation.

Person: I didn't know that. Can you explain?

Logo: Sure. If you say name 0 "black...

Person: Wait a minute. I don't know about name.

Logo: Then you must know about make.

Person: Yes.

Logo: Well it's the same. name 0 "black is the same as make "black 0.

Person: Why have both?

Logo: Some people prefer one form, some like the other. Some folks like to switch from one

form to the other depending on the context in which the command is being used.

Person: Isn't switching confusing? Don't people get the order of the inputs mixed up.

Logo: Yes.

Person: Well, since I know about make, can we stick with that?

Logo: If we must. I prefer name.

Person: Why?

Logo: Well, because . . . Say, that's another discussion. Let's just use make for now. When

you say make "black 0, you make the word black the name of the number 0. Here are

two more examples

make "flavors [vanilla [chocolate chip] strawberry]

make "greeting "hi

Now thing is a procedure that can report an object if you give its name. For example, if

5

you want to print a greeting on the screen you could type

print thing "greeting

See, the word hi is on the screen.

Person: I see that, but I've never seen the primitive thing before. I think I can see what it does

though. Let me try this

print thing "flavors

Sure, you put vanilla [chocolate chip] strawberry on the screen. That's what I thought.

Print needs an input. Thing gets the object with the name we gave it as input and

reports that object to print.

Logo: Right. Once you give something a name, you can ask thing to report what it is by

giving thing its name as input. You're asking for the thing, or object, whose name is the

specified word.

Person: But I always say print :flavors. Oh I get it. You said that is just an abbreviation. It's an

abbreviation for thing!

Logo: Not quite. It's an abbreviation for thing ".

Person: Oh sure. We don't say print : "flavors.

But what about using in a procedure like this

to square :side

repeat 4 [forward :side right 90]

end

Logo: You could write that procedure as

to square :side

repeat 4 [forward thing "side right 90]

end

and it would work just as it did before.

Person: But what about :side after to square. Can you substitute

to square thing "side?

Logo: No. The title line is special. It's not a Logo: instruction, so using the reporter thing in

that context isn't right. You use just the word side, but it actually doesn't matter much

what punctuation you use. You could write

to square "side

6

or

to square side

Person: Wait. I thought that using " means the literal word and using no punctuation indicates

that you want to run a procedure. Is side a procedure in your last example?

Logo: No. But, remember that the line beginning with to is not an instruction. When I see the

word to I assume that the next word is the name of the procedure you want to define.

Any words after that on the same line I assume to be the names of inputs to that

procedure. I just go by the position of the words on the line. I don't really care about the

punctuation.

Person: That seems uncharacteristically sloppy of you. You're usually so precise.

Logo: Yes. I suppose you're right. I guess I should settle on some punctuation for procedure

title lines and stick to it. Most people use : before procedure input names. Maybe I

should just go with that.

Person: Actually, I think I like the idea of using ".

Logo: Why?

Person: Well, when you say make "green 2, you're using the word green as the name of the

number 2. Hmm... I think I see why name might be better than make. Let me reword

that. When you say name 2 "green, you're using the word green as the name of the

number 2. When you write a procedure with inputs you're really doing the same thing.

Logo: Except that the name is only used inside the procedure. It's local to that procedure.

Name creates global names for use by any procedure.

Person: Yes, I know. When we say square 50 we're implicitly saying

name 50 "side

for use in the procedure square. If name uses a quoted word as input, maybe the same

should be true about the names of inputs to procedures.

Logo: Well that makes sense.

Person: That was a long digression. I wanted to know why setpos [:x :y] didn't work. You said

that it was for the same reason that setpos [random 80 random 80] doesn't work. Oh I

see! setpos [:x :y] is really setpos [thing "x thing "y]. The rule is that you don't run

procedures that are inside brackets. It's the procedure thing that isn't being run.

Logo: Right. When you write setpos [:x :y] you just disguise the fact that you're using the

procedure thing.

Person: OK. Well I think I understand all this, but I still need a way to set the turtle at random

7

positions. Setpos wants a list of two numbers so I guess I have to get those numbers
from two random procedures first and then put them in a list.

Logo: That's right. You could use list to do that.

Person: Let's see. . . list puts together words or lists into a larger list. How about this:

setpos list random 80 random 80

Great! You moved the turtle and you didn't complain.

Logo: Setpos needs a list of two numbers as input. List needs two objects of any sort as

inputs. The two random procedures each give list a number so list is happy. He puts

the two numbers into a list and hands them to setpos. Can you fix your setxy

procedure?

Person: I think so.

to setxy :x :y

setpos list :x :y

end

Logo: Now try it.

Person: setxy 60 80

It works! This has been very helpful. Thanks.

Logo: You're quite welcome. Come back again if you have any other problems.

Person: goodbye

Logo: I don't know how to goodbye

Person: Oh no!

to goodbye

print [See you again soon.]

end

goodbye

8

Logo: See you again soon.

9

PART II

Logo: Well, hello again. How've you been?

Person: Fine, thanks, but I have another Logo problem.

Logo: What's up?

Person: I'm trying to write a "guess my number" game. The program "thinks" of a number

between 0 and 100 and we see how many turns the player needs to get it.

Logo: 50

Person: Huh?

Logo: My first guess is 50. Is that high, low, or right?

Person: Wait! We're not playing the game yet! I just want to tell you about my problem

programming it in Logo:!

Logo: Oh. Too bad. I like to play that game.

Person: Well, if you help me get the program working we can play it all you want.

Logo: Great! What's your problem?

Person: Well, here's my program

to game

name random 101 "number

make "guesses 1

get.answers

print [Do you want to play again?]

name readlist "answer

ifelse :answer = "yes

[game]

[print "bye]

end

to get.answers

print [What's your guess?]

name readlist "answer

if answer = :number

[(print [Right! in] :guesses "guesses)

stop]

if answer > :number

[print [Too high]

make "guesses :guesses + 1

get.answers stop]

if answer < :number

10

[print [Too low]

make "guesses :guesses + 1

get.answers stop]

end

It randomly picks a number between 0 and 100. Then it asks for a guess. If you get it,

you see a "that's right" message and the game is over. If not, then the program checks to

see if your guess is high or low and tells you. That's where the problem is.

Logo: Let's try it.

Person: OK.

game

Logo: What's your guess?

Person: 23

Logo: < doesn't like [23] as input in get.answers

Person: Why not?

Logo: Because [23] isn't a number. < can only compare numbers with each other.

Person: If it's not a number, then what is it?

Logo: It's a list.

Person: But I just typed in 23. That's a number.

Logo: Yes, but readlist takes what you type and reports it as a list. In this case, you typed a

single number, but readlist will read any combination of things and report it as a list.

It's real flexible.

Person: Yeah, but I need to read 23 as a number.

Logo: Well, try readnumber.

Person: OK. I'll edit my get.answers procedure and change readlist to readnumber. There,

now . . .

game

Logo: What's your guess?

Person: 23

Logo: I don't know how to readnumber in get.answers

Person: But you told me to try readnumber!

11

Logo: Well sure, but you'll have to write it first.

Person: Thanks a lot! Where do I start?

Logo: What do you want readnumber to do?

Person: I want it to read what I type at the keyboard . . .

Logo: Readlist does that!

Person: I know, but I want it to read a number, not a list.

Logo: Readlist just reads what you type. It's not how it reads it that counts, it's how it reports

it. You want a procedure that reads what you type and reports a number.

Person: Well I'm not quite sure what to do, but I'll get started. I'll use readlist . . .

to readnumber

output do.something.with readlist

end

Logo: Good start. Now do.something.with needs to turn the list into a number.

Person: Wait. The thing inside the list is a number. Can't I extract it?

Logo: Sure. You could use . . .

Person: First!

Logo: . . or last. If there's only one thing in the list it doesn't matter.

Person: OK. So . . .

to readnumber

output first readlist

end

Logo: Now try it.

Person: game

Logo: What's your guess?

Person: 50

Logo: Too high

What's your guess?

Person: 25

Logo: Too high

12

What's your guess?

Person: OK, let's stop the program. I see that it's working.

Logo: But I want to play more.

Person: Oh all right!

game

Logo: What's your guess?

Person: 50

Logo: Too low

What's your guess?

Person: 75

Logo: Too high

What's your guess?

Person: 67

Logo: Too high

What's your guess?

Person: 56

Logo: Too low

What's your guess?

Person: 59

Logo: Too low

What's your guess?

Person: 61

Logo: Too high

What's your guess?

Person: 60

Logo: Right! in 7 guesses

13

Do you want to play again?

Person: yes

Logo: bye

Person: Wait a minute! I said yes, I did want to play again. You said bye. What's wrong?

Logo: It's the same problem as before.

Person: Huh?

Logo: "yes doesn't equal [yes]

Person: Oh, I see, just like 23 doesn't equal [23]

Logo: That's right. You could fix it by . . .

Person: I know! I could change the end of game to

ifelse :answer = [yes]

[game]

[print "bye]

Logo: Sure. That'll work. Or instead of that change you could leave the ifelse command alone

and change the previous line to use your readnumber procedure instead of readlist:

name readnumber "answer

ifelse :answer = "yes

[game]

[print "bye]

Person: But "yes isn't a number.

Logo: Well, your readnumber procedure is really a readword procedure. It reads any words,

not just numbers. If readlist reports [50] then readnumber reports 50. If readlist reports

[yes], then readnumber reports "yes.

Person: That makes sense. I should probably call the procedure readword instead of

readnumber.

Logo: OK. Let's play the game some more!

Person: OK.

game

Logo: What's your guess?

Person: 50

14

Logo: Too low

What's your guess?

Person: 75

Logo: Too low

What's your guess?

Person: 87

Logo: Too high

What's your guess?

Person: 81

Logo: Too high

What's your guess?

Person: 78

Logo: Right! in 5 guesses

Do you want to play again?

Person: Sure! why not?

Logo: bye

Person: oops!

