

1

 www.logofoundation.org

Creating a Logo Tool Box
by
Brian Silverman and

Michael Tempel
© 1989 LCSI

© 1991 Logo Foundation

You may copy and distribute this document for educational purposes provided that

you do not charge for such copies and that this copyright notice is reproduced in

full.

It is often said that if Logo doesn't have a particular primitive procedure you need,

you can write it in Logo. Here are some tips about how to do it.

Problem Solving vs Implementing Solutions

Most programming languages are designed for implementing the solutions to

problems. The ideology, if not always the practice, of many data processing

professionals is that problems should first be solved in broad outline, then refined

and only at the last step translated into a program. Interaction with the computer does

not aid in the solution of the problem. The problem has presumably been solved

before coding begins.

Logo is ideally suited to a different sort of problem solving. A problem may not be

well defined, or exploration may begin without a specific problem in mind. Logo

provides an interactive environment in which thinking may be expressed and

reflected upon. Problems are explored and solved while interacting with Logo.

Most programming languages are well suited to a particular class of problems. This

is quite reasonable when the problems are generally familiar and predictable such as

managing the company payroll or processing tax returns. For example, Cobol makes

it relatively easy to format and display numerical information. It is good for business

applications. Fortran is designed for solving equations and is useful to engineers.

Each language contains the tools needed for its special class of problems.

http://www.logofoundation.org/

2

Logo is more general. If problems are loosely defined, you may not know ahead of

time what tools you will need. Therefore it's best to have what you need to make

tools as you go.

If you were messing around with probability and statistics, you might want to have

procedures that compute factorials, means, medians and various kinds of random

distributions. Logo gives you the basic arithmetic operations and a simple random

number generator. You can use these to build what else you need.

If you were working with natural language, you might want procedures that reverse

lists, delete words from lists or insert words into lists. The simple list manipulation

procedures provided in Logo may be used to create such tools.

Why not include all these various tools in Logo instead of asking people to make

them? For one thing, such an approach would produce an enormous Logo. More

important, since Logo is designed for exploration and the creation of new

knowledge, the designers of Logo can't presume to know what tools will be needed

by users. A well designed Logo provides flexible general purpose building blocks.

Literacy vs Fluency

You might be feeling a bit uneasy about the preceding discussion. You have been

handed a Logo. Now get out there and explore, making your tools as you go. Oh, by

the way, you do, of course, know how to write procedures like factorial, median,

reverse, delete and insert, don't you?

Well, if you don't, stick around for the rest of this workshop.

We will start by going through a series of procedures that illustrate various points

about Logo that are important for tool building. Things generally get more difficult

as we go.

The first step is to reach a level of literacy with these procedures. That is, you should

be able to follow how they work, not be surprised at their results and even predict

outcomes.

Beyond literacy you will achieve fluency, the ability to create your own procedures

of the kinds illustrated.

Procedures

Logo programs are built out of procedures. Some of these procedures are primitives.

You may also define your own procedures. The only important difference between

these two categories of procedures is that the scripts of the primitives are written in

machine language while your procedures have Logo scripts. There are other, more

important distinctions between types of procedures.

3

Here are some procedures you are probably familiar with. They are primitives. What

categories can you divide them into?

forward

cleartext

print

word

heading

name

setpos

pos

home

Here's one categorization:

forward

cleartext

setpos

name

print

home

word

heading

pos

The procedures in the first column are commands. The others are reporters (also

called operations). Commands do something. reporters report, or output a Logo

Thing. Logo Things may be words or lists. When a procedure outputs a Logo Thing,

there must be another procedure there to accept it as an input. This leads us to a

second way to divide our list of procedures:

cleartext

home

forward

name

print

setpos

heading

pos

word

Cleartext and home are commands that do not take any inputs. Forward, name,

print and setpos are commands that require inputs. If you type forward with no

number following it, Logo will complain. Forward 50 is fine.

Heading and pos are reporters that don't require inputs. Word needs two inputs.

Let's look at some interactions with Logo that show how all this works:

4

?Cleartext This command clears text

from the screen.

?forward

Not enough inputs

to forward

This command needs an input.

?forward 100 This works.

?word "Logo "Writer

I don't know what to

do with LogoWriter

Word is a reporter but

there's no procedure to

accept its output as an input.

?word 7 5

I don't know what to

do with 75

The same problem.

?forward word 7 5 The turtle moves

forward 75 steps.

You probably know how to write your own commands in Logo:

to square

repeat 4 [fd 50 rt 90]

end

Square is a command that takes no inputs. Here's a version of square that takes one

input:

to square :side

repeat 4 [fd :side rt 90]

end

In order to write a reporter in Logo you have to use the primitive Output. Here's an

5

example:

to five

output 5

end

?print five + five

10

Output takes a Logo Thing as an input. The number 5 is the input to output.

Output stops the procedure Five. Output also causes Five to be a reporter whose

output is 5. In general, the input to output becomes the output of the procedure. (Is

that not less than unclear?)

Here's an example of a reporter that requires an input:

to double :number

output :number + :number

end

?print double 4

8

?print double five

10

Here's a procedure that pads one and two digit numbers to three digits and leaves

numbers with three or more digits alone.

to padnumber :num

if :num < 10 [output word "00 :num]

if :num < 100 [output word "0 :num]

output :num

end

Notice that if :num is less than 10, the second line is never reached because output

in the first line stops padnumber. If :num is 10 or more but less than 100,

padnumber stops at the second line and the last line is not reached. If :num is 100

or more the last line is executed.

Recursion

6

It turns out that many useful Logo reporters are recursive. Before looking at some

recursive reporters, here are some recursive commands:

to countdown :num

if :num < 1 [stop]

print :num

countdown :num - 1

end

to countdown :num

if :num < 1 [stop]

print :num

countdown :num - 1

print :num

end

Does the behavior of the second version surprise you? If so, here are some things to

think about:

 When a Logo procedure calls a subprocedure it waits until the subprocedure

finishes and then continues. A procedure doesn't go away when it calls a

subprocedure.

 Primitive procedures and user-defined procedures work the same way.

 Procedures don't care what the names of their subprocedures are.

 Subprocedures don't care about the names of the procedures that call them.

Here's another pair of procedures that are equivalent to countdown:

to squiral :side

if :side > 100 [stop]

forward :side right 90

squiral :side + 5

end

to squiral :side

if :side > 100 [stop]

forward :side right 90

squiral :side + 5

left 90 back :side

end

Recursive Reporters

7

Here's an example of a recursive reporter:

to factorial :number

if :number = 0 [output 1]

output :number * factorial :number - 1

end

?print factorial 0

1

?print factorial 5

120

This translates into English as: "The factorial of 0 is 1. The factorial of a number

greater than 0 is the number times the factorial of one less than the number."

to sum.of :list

if empty? :list [output 0]

output (first :list) +

(sum.of butfirst :list)

end

?print sum.of [1 2 3 2 5]

13

In English this is: "If a list is empty, then the sum of the numbers in it is 0.

Otherwise, the sum of a list of numbers is the first number plus the sum of the rest of

the numbers in the list".

Here's one more example:

to reverse :list

if equal? 1 count :list [output :list]

output lput first :list reverse bf :list

end

"The reverse of a list of one element is just that list. The reverse of a longer list is the

first element of the list stuck on the end of the reverse of the rest of the list."

Here are some rules to observe when writing recursive reporters:

1. There must be at least two different ways of handling the inputs, a simple one

that immediately produces an answer and another one that, in part, uses the

same procedure to produce the answer.

In factorial, an input of 0 produces 1 as an answer. Otherwise factorial, in

part, uses factorial to compute an answer.

8

Both parts are needed. Try running this:

to factorial :number

output :number * factorial :number - 1

end

or this

to factorial :number

if :number = 0 [output 1]

end

2. The input to the recursive subprocedure must be different from the input to

the procedure that called it. The input to the subprocedure factorial is

:number- 1. The input to the subprocedure sum.of is butfirst :list. If the

input to the subprocedure were not different from the input to the calling

procedure, there would be no way for the simple case to ever be reached. Try

running each of these altered versions of factorial, sum.of and reverse:

to sum.of :list

if empty? :list [output 0]

output (fisrt :list) + (sum.of :list)

end

to factorial :number

if :number = 0 [output 1]

output :number * factorial :number

end

to reverse :list

if equal? 1 count :list [output :list]

output lput first :list reverse :list

end

3. All cases must result in something being output.

Here's a procedure that doesn't work:

to reverse :list

if equal? 1 count :list [output :list]

lput first :list reverse butfirst :list

end

Here's another flawed procedure:

to sum.of :list

9

if empty? :list [stop]

output (first :list) +

(sum.of butfirst :list)

end

Look at the appendix for some more interesting examples of recursion.

Transportable Procedures

Good tools are useful in many contexts. You should be able to use the same Logo

procedure as a part of several programs. There may, for example, be different

situations in which you will need to find the average of some numbers.

Here's one way of doing this:

to average :number.list

output (sum.of :number.list) /

(count :number.list)

end

?print average [1 2 3 4 5 6 7]

4

Here's another way:

to average

name [1 2 3 4 5 6 7] "numbers

name sum.of :numbers "total

name count :numbers "count

name :total / :count "average

end

?average

?print :average

4

The first version of average may be added into any Logo program that doesn't

already have a procedure called average. You hand the procedure a list of numbers

and you get back the average. What goes on inside average does not affect names or

other procedures that may be around. It works with any list of numbers as input.

The second version works with only a specific list of numbers. It also uses the global

names numbers, total, count and average. If these names already exist, their values

will be changed by the procedure average.

In general, tools should be easily movable from one program to another. In most

10

cases, global names are to be avoided. The procedure should not produce side effects

upon the workspace or be inadvertently affected by what is already around.

Projects

Here are some suggested projects on which to exercise your tool building skills:

Games

Computers may be used to play games, such as chess or tic tac toe, in several,

increasingly complex ways:

1. The computer displays the game board. It accepts moves that are input by

human players and simply shows the resulting positions.

2. In addition to displaying moves, the computer knows what the legal moves

are and prevents illegal moves from being made.

3. The program plays against a human. It makes legal moves, but has no

strategy for winning.

4. The program has a playing strategy based on learning from previous games.

It has no initial game plan other than to make legal moves, but it learns not to

repeat fatal errors made in prior games.

5. The program has a strategy built in from the start. This strategy may be

modified by experience.

The collection of procedures that you need at each step may be incorporated into the

program you create at the next level. Different people may work on different aspects

of the solution and mesh their results together.

Here's a very simple game to try this on. It's called Hexapawn. It is played on an

abbreviated chess board that is three squares on a side. Each player has three pawns.

The opening position looks like:

The legal moves in Hexapawn are the same as for the pawns in chess. A pawn may

11

move forward to the space in front of it if that space is vacant. A pawn may capture

an opposing piece by moving diagonally forward. The game ends in one of three

ways:

 If a player can make no legal moves his opponent wins.

 If a player captures all of his opponent's pieces he wins.

 If a player moves a piece to the opposite side of the board he wins.

The game is limited enough to be of little interest to people, but still presents a

reasonable challenge for a computer.

After working with Hexapawn, you might make things more complicated by playing

Octopawn on a four by four board. Then try tic tac toe and possibly chess.

When you get up to working on programming playing strategies you should be aware

of two general approaches to take. First, you can program all possible game

outcomes. If your program knows all of the possibilities that can occur from a given

point on, it also knows which moves will win. It can always select the correct move

based on this knowledge. This works well for hexapawn and even tic tac toe, but it

would take the fastest computers available about 30 billion years to run through all

the possible outcomes of a chess game. Since you only have an Apple, it would take

even longer. It is this impracticality of an "exhaustive search" strategy that makes

chess playing programs interesting. Some rules and approaches need to be

programmed.

Graphs

Make a collection of tools that produce bar or line graphs from some data. Some of

the tools you would need would:

 draw a bar of specified size in a specified position

 plot points

 connect plotted points

 compute averages and totals

 draw axes and scale them properly

 put titles and labels on the graph

Pluralization

12

Write a program to pluralize any word you give it as input. It should work like this:

?print plural "dog

dogs

?print plural "mouse

mice

?print plural "fox

foxes

As you work on this, you'll find that the Logo primitives first, last, butfirst, word

etc. may not always be convenient to use directly. You might want to construct tools

like last.two or next.to.last. Other tools such as vowel? might be useful.

Logo for Little Kids

Attempts have been made to make Logo accessible to very young children. One

category of solutions rests on the assumption that kids can't find the Return key.

These "Instant" type programs move the turtle with single keystrokes. While easy to

start using, these programs are discontinuous with Logo as a whole since any Logo

procedures not assigned to keystrokes are unavailable, and the method of invoking

procedures - without pressing Return - will not apply when the Instant program is

discarded.

Can you create an Instant program that also allows the use of regular Logo

commands?

Instead of an Instant program, can you write a collection of tools that simplify Logo

in similar ways, but work at top level? For example, write a procedure f that causes

the turtle to go forward 10.

Try making a "slow turtle" whose moves and turns are slower than normal so that the

drawing process may be more easily followed.

Create a collection of procedures that scale the turtle movements so that small

numbers produce big effects.

You might also want to create tools like square, circle, rectangle and triangle.

Using these procedures children can achieve satisfying results before they are able to

program such shapes themselves.

13

Appendix

Here are some interesting recursive Logo procedures:

to printvals :list

if empty? :list [stop]

printval first :list

printvals bf :list

end

to printval :var

type :var type char 32

if name? :var [pr thing :var][pr "\-\-\-]

end

14

?printvals [num size foo]

will print the values of num, size and foo if they are names. If they're not names, ---

is printed.

to map :func :list

if empty? :list [stop]

run se :func [first :list]

map :func bf :list

end

to square :side

repeat 4 [fd :side rt 90]

end

?map "square [10 20 30 40 50]

displays five squares of the specified sizes.

to assign :names :vals

if empty? :names [stop]

make first :names first :vals

assign bf :names bf :vals

end

?assign [n1 n2 n3 n4] [10 20 30 40]

?shownames

:n1 is 10

:n2 is 20

:n3 is 30

:n4 is 40

This procedure plays the Tower of Hanoi game:

to hanoi :from :to :spare :n

if :n = 1 [(pr :from "to :to) stop]

hanoi :from :spare :to :n - 1

(pr :from "to :to)

hanoi :spare :to :from :n - 1

end

Try this:

?hanoi "A "B "C 1

A to B

?hanoi "A "B "C 2

15

A to C

A to B

C to B

?hanoi "A "B "C 3

A to B

A to C

B to C

A to B

C to A

C to B

A to B

?hanoi "A "B "C 10

to same.as? :a :b

if word? :a [output :a = :b]

if word? :b [output "false]

if subset? :a :b [output subset :b :a]

output "false

end

to subset? :a :b

if empty? :a [output "true]

if part.of? first :a :b [output subset? butfirst :a :b]

output "false

end

to part.of? :a :b

if empty? :b [output "false]

if same.as? :a first :b [output "true]

output part.of? :a butfirst :b

end

?print same.as? [a b c] [b c a]

true

?print same.as? [a b c] [b c [a]]

false

?print same.as? [[a b c] d e] [e [c a b] d]

true

?print subset? "a [a b c]

true

?print subset? [a] [a b c]

false

?print subset? [a] [[a][b][c]]

true

?print subset? [a b] [b a c]

true

16

?print part.of? "a [a b c]

true

?print part.of? [a][a b c]

false

