
1

 www.logofoundation.org

A LogoWriter Ecology Simulation
by
Thomas F. Trocco

© 1989 LCSI

© 1993 Thomas F. Trocco

Computer & Science Department Chair

Computer Teacher, Grades 2 - 8

St. Hilda's & St. Hugh's School

New York, NY

Presented at the April 13, 1993 New York Logo Users Group meeting.

Acknowledgements

Thanks to Michael Tempel, Steve Neiman, Andrew Newcomb, Eliot Widaen, and Diane Linder

for their interest, suggestions, editing, and discussion. Special thanks to Michael and Diane for

their suggestions on mating proximity; to Eliot for the birth placement concept; to Andy for his

editing suggestions; and to Steve for his help with Apple IIGS compatibility. Extra-special

thanks to Tyler Barnes, Tracy Blount, Vanessa Cook, Matthew Graves, Maritza Schaeffer,

Austin Shau, and Laura Stickney for their presentation at the Logo Users Group.

You may copy and distribute this document for educational purposes provided that you do not

charge for such copies and that this copyright notice is reproduced in full.

http://www.logofoundation.org/

2

Introduction

With the release of an ever-increasing number of simulation programs (e.g., Sim Ant, Sim Earth,

etc.), students have much more to work with than just the original Lemonade Stand program of

ten years ago. However, creating a simulation from scratch can teach students much more than

using off-the-shelf software.

Computers are excellent tools with which to simulate real events: variables can be controlled and

altered at will and events can occur faster than in real time. After trying various simulation

programs, I found myself wondering how my sixth grade students and I might create such a

program with LogoWriter. Our sixth grade class spent a week in the New England countryside

with Nature's Classroom in the fall, and came back to school with some knowledge of predator-

prey interactions. They continued their studies in science class. When I suggested to the students

that they try to create their own predator-prey simulations in LogoWriter, they jumped at the

chance.

LogoWriter, with four turtles and the ease with which it allows animation to be coded, is an

excellent workbench for creating simulations. Before my students began work on their own

simulations, I programmed a more complex version. This fulfilled two purposes. First, working

on a complex Logo problem gives me great enjoyment. Second, whenever I assign a long-term

complex task to my students, I try produce a simple version first so I can anticipate problems and

guide them when necessary. In this case, I enjoyed the task so much that I created a much more

complex version than usual.

With student projects, I usually strive to have the entire class have the same underlying program

structure. Upon this foundation each student can add his/her own modifications. Throughout the

project, I have stressed that the worlds the students created are their own, and may follow any

rules, as long as a consistent logic holds true. Most solutions have come from the students,

though at times I have given hints and prodded them towards a specific solution when too much

time passed without a workable answer to a problem. The duration of this unit was one semester,

with one or two class meetings per week.

The Setting

Students at St. Hilda's and St. Hugh's School practice keyboarding and use educational software

in Nursery through first grade with their classroom teachers. Beginning in second grade, children

also work with LogoWriter in the computer lab. The students meet with me once or twice a week

for programming projects. Each class is forty minutes long. Class size varied this year from nine

to twenty students. I usually begin each unit by introducing a new command or concept, or by

posing a question or problem. Then the students work on experimentation, application, and

testing throughout the duration of the unit, which can vary from one period to as long as one

semester. Often, there are a few interrelated concepts and questions being worked on

simultaneously. Units this year included word processing and book-making in the second grade,

animated sentences in the third grade, coordinate plotting of designs in the fourth grade, ancient

3

Egypt-based projects in the fifth grade, derivation of Pi and the creation of pie graphs in the sixth

grade, and independent programming projects (branching stories, animation, music 'videos', and

multiple choice Latin exams) in the seventh and eighth grades. Many classes also use the lab for

Writer's Workshops using LogoWriter or Word Perfect with their language arts teachers. The lab

currently contains twenty-one MS/DOS computers (ranging from monochrome XTs with no hard

drives to PS/2s) running LogoWriter 2.0.

Development of My Simulation

To lay a foundation for this project, I decided on the parameters for my ecosystem. My

ecosystem would:

 be aquatic

 have one species of plant

 have one species of herbivorous fish

 have one species of carnivorous fish

 have two adults, male and female, of each fish species

 have the herbivores eat only plants

 have the carnivores eat only the herbivores

 have fish mate only with members of the same species

 have a random number and random distribution of plants each time the simulation was

run

The number of species and the number of individuals per species were chosen for simplicity and

because of LogoWriter's limitation of four turtles. I chose an aquatic ecosystem so my scenery

would be simple: with no horizon line, the entire screen could use one background color.(see

Figure 1 for a screen print-out) I next began creating the shapes needed for the ecosystem.(shape

2 was later removed) Shape numbers 1 through 8 were used (see Table 1 and Figures 2 - 8).

Even-numbered turtles (0 & 2) were used for the herbivores and odd-numbered turtles (1 & 3)

were used for the carnivores.(see Table 2) I began programming this project on a four-color

CGA IBM/PC, so I decided to begin with three screen colors for my three species. I chose white

for herbivores, cyan for plants, and magenta for carnivores. Other colors were added later for

other platforms.(see Table 3a)

I began with a setup procedure to clear the screen:

to setup
rg
end

I then wrote a set.fish procedure to give the four turtles their proper shapes, colors, and headings:

4

to set.fish
tell all st pu home
tell 0 setsh 3
tell 1 setsh 6
tell 2 setsh 4
tell 3 setsh 7
tell [0 2] setc 1 seth 90
tell [1 3] setc 3 seth 270
end

The heading depended on whether the fish was facing left (seth 270) or facing right (seth 90).

However, before the fish begin to move, the plants should be stamped on the screen.

to set.grass
setsh 1 setc 2
end

to grow.grass
repeat 25 + random 25 [plant.grass]
end

to plant.grass
pu
setpos list random 320 ((-1 * random 94) + 8)
pd
stamp
end

Set.grass sets the shape and color of the turtle. Grow.grass calls the plant.grass procedure

between 25 and 49 times, randomly. Random was used to give the simulation some variation

each time it ran. The range was chosen to have sufficient plants for feeding, but not so many that

the screen was mostly stamped plants. The plant.grass procedure places the turtle at a random

position and stamps it. Setpos requires a list of two numbers as input. Random 320 was chosen

as the first, or "x" value, because this is the width of an IBM screen. For the "y" value, I wanted

plants only in the lower half of the screen. Since the IBM screen is 189 pixels high, I chose one-

half of that, or 94. By multiplying this by -1, only points in the lower half of the screen will be

addressed. However, since shapes are 16 pixels high (in IBM, Apple IIGS, C64), I added half of

this, or 8, to the number so the plants wouldn't be split between the bottom and top of the screen.

I was now ready to animate my fish with a begin procedure, using herb and carn:

to herb
fd random 10
end

5

to carn
fd random 10
end

to begin
tell 0 herb
tell 1 carn
tell 2 herb
tell 3 carn
begin
end

The begin procedure caused the four turtles to move across the screen one at a time anywhere

from 0 to 9 steps each time by using forward with a random 10. Begin then calls itself, and

continues until a stop command is entered from the keyboard.

Because the headings had been set at either 90deg. or 270deg., the fish would only move

horizontally. Just as I had used random for fd, I could also use it for heading. I modified the

herb and carn procedures:

to herb
fd random 10 seth 248 + random 45
end

to carn
fd random 10 seth 68 + random 45
end

Because of the way I had designed the shapes, the carnivores had to face right, and the

herbivores left. By using random, the heading could vary but still face in the correct general

direction. I chose a range of 44 degrees by using random 45 which reports a range of 0 to 44. To

face right, 68 + random 45 was used. This reports a range of 68 to 112, with an average of 90.

To face left, 248 + random 45 was used. This reports a range of 248 to 292, with an average of

270.

With this enhancement, herbivores and carnivores moved around the screen with random

distances and headings, colliding with each other randomly with a satisfactory frequency. I now

needed to program feeding and mating.

to herb
fd random 10
seth 248 + random 45
if equal? colorunder 2 [feed]
if equal? colorunder 1 [herb.mate]
end

6

to carn
fd random 10
seth 68 + random 45
if equal? colorunder 1 [feed]
if equal? colorunder 3 [carn.mate]
end

Now, as the animals moved around the screen, the program tested for colorunder. Whenever a

carnivore passed over color 1 (an herbivore), feed would be called, and whenever it passed over

color 3 (the other carnivore), carn.mate would be called. For an herbivore, feed would be called

whenever it passed over color 2 (a plant), and herb.mate would be called whenever it passed

over color 1 (the other herbivore).

Feed was simple to program:

to feed
pe fill pu
end

Feed erases as much of the food shape as can be filled in, depending on the location and

"contiguousness" of the pixels.

The two mating procedures work by first setting the shape of the female to the baby's shape,

stamping this shape to the screen, then setting the shape back to the mother's. The fd 20

commands, which produce a "rebound" effect, were added because multiple matings were

occurring as adults of the same species remained in close proximity.

to herb.mate
tell 2 setsh 5
pd stamp pu
setsh 4 fd 20
end

to carn.mate
tell 3 setsh 8
pd stamp pu
setsh 7 fd 20
end

Some problems arose at this point. While herbivores could feed on plants by erasing them, a

carnivore feeding on an adult had no effect on it because a turtle cannot be erased. In addition,

once babies began to be stamped on the screen, adults would mate as they passed over their

offspring. I also discovered at this point that in Macintosh and Commodore 64 LogoWriter,

while colorunder will test for colors stamped, filled, or drawn on the screen, it will not test for

turtle color. Another test had to be used. One solution is to test for the distance between the male

and female.(See the end of the program listing for an example.) The program at this point was as

follows:

7

to startup
setup
set.grass
grow.grass
set.fish
begin
end

I had successfully written a simple simulation. I was really quite excited seeing my fish move

around the screen, feeding and stamping babies! While this was a good start, I wanted to go

further. I drew up a list of features I wanted. Many of these were arbitrary, but I decided that I

could create any rules for my ecosystem as long as there was a consistent logic applied:

 The simulation should not be tied to any one platform running LogoWriter

 The number of feedings should be tallied

 The number of births should be tallied

 The two species should give birth in different areas of the screen to reinforce their niche

differences

 A timer should be added, so feeding and mating rates could be calculated and compared

 Grass should continue to grow throughout the simulation

 Fish should not wrap around the screen vertically because it looks odd

 Adult and offspring should be different colors to avoid intergenerational mating

 Carnivores should eat herbivore babies, but not herbivore adults

 Carnivores should eat their own offspring some of the time (life is tough)

 Females should be able to reproduce parthenogenically after having fed a specified

number of times

 Proximity, and not COLORUNDER, must be used for mating to allow for Macintosh and

C64 compatibility

 Species-specific courtship rituals should be added

These features were added to the simulation.(See annotated program listing in Addendum A. A

flow chart is shown in Figure 9)

While this simulation can now run on all versions of LogoWriter, be aware that it will be quite

slow when running on anything slower than an IBM 286. For Apple IIGS LogoEnsemble users,

type newpage40 to set 40 columns before you name your page. Because the Commodore 64 has

very little available memory and because only LogoWriter 1.1 is available for it, many deletions

and modifications have to made.(See Addendum D)

Development of a Student Simulation

To lay a foundation for the student project, I asked each student to come up with a set of rules for

ecosystems in general. They merged these into a combined list, then derived a shorter list of

general rules from these during a brainstorming session. The next step was to divide students into

cooperative groups of four or five students each. Each group had to decide what type of

ecosystem they wanted, and to state rules for their ecosystem. I created 3 groups of four boys and

one group of five girls.

8

For simplicity, each ecosystem was allowed only one predator species, one prey species, and one

plant species. Students then began creating the shapes needed for their ecosystem.(See Table 1

and Figures 1-8.) For class-wide consistency and easier teacher debugging, I suggested using

even-numbered turtles (0 & 2) for the herbivores, odd-numbered turtles (1 & 3) for the

carnivores (See Table 2) white for herbivores, cyan for plants, and magenta for carnivores. Other

colors, if available, were used for scenery and background.(See Table 3b) We began with a setup

procedure to give the four turtles their proper shapes, colors, and headings:

to setup
tell all st pu home
tell [0 2] setc 1 seth 90
tell [1 3] setc 3 seth 270
tell 0 setsh 3
tell 1 setsh 6
tell 2 setsh 4
tell 3 setsh 7
end

The heading depended on whether the animal was facing left (seth 270) or facing right (seth 90).

The next step was to create scenery for the ecosystem. Students wrote procedures to stamp their

plants on the screen. For terrestrial ecosystems, students split the screen with a horizon line.

Other components, such as ponds, mountains, etc., were added by some students. A typical

scenery procedure is shown below: (See Addendum F for full program listing)

to scenery
scene
pond
trees
sun
end

Students then spent a few weeks creating scenarios, such as a giraffe walking up to a tree and

eating from its crown, or a wolf chasing a deer. The girls initially concentrated on mating and

giving birth, whereas the boys had concentrated on predation. With reporters from each group

often seeing what others were doing, the girls added predation and the boys added mating. My

reason for creating an all-girl group had been to allow for full female expression. This was

successful and had affected the boys as I had hoped. After all groups completed this stage, the

students watched each other's simulations. They realized that they had created plays with actors

following set lines, rather than free-flowing and unpredictable simulations. I suggested that it

might be possible to move the animals around the screen randomly so that interactions could not

be predicted. We wrote a move procedure, using herb and carn:

to herb
fd random 10
end

9

to carn
fd random 10
end

to move
tell 0 herb
tell 1 carn
tell 2 herb
tell 3 carn
move
end

The move procedure caused the four turtles to move across the screen anywhere from 0 to 9

steps each time by using forward with a random 10.

Next, students wanted to be able to have their animals eat, so I introduced colorunder. They

modified the herb and carn procedures as follows:

to herb
fd random 10
if equal? colorunder 2 [eat]
end

to carn
fd random 10
if equal? colorunder 1 [eat]
end

As in my program, as the animals moved around the screen, the program tested for colorunder.

If the carnivore passed over color 1 (an herbivore), it would eat, while an herbivore would eat

whenever it passed over color 2 (a plant). It was now up to the students to devise an eat

procedure. In a class discussion, three possibilities were suggested:

to eat This takes a chunk out of the food the size and shape of

pe stamp pu the eater. One student likened it to a cartoon where a

end character runs through a wall and leaves a hole its size

and shape.

to eat This erases as much of the food shape as can be filled in

pe fill pu depending on the location and contiguousness of the

end pixels.

10

to eat

pe fd 1 pu This takes a one-pixel bite out of the food.
end

Students decided which of these three they wanted to use. Most chose to use fill. They realized

that when the carnivore passes over an herbivore, it won't affect it because while a stamped

shape can be erased, a turtle cannot. Students then decided to have their animals give birth so

that stamped babies could be eaten. To tackle the programming to control mating, colorunder

was used again. Since the students were working in MSDOS LogoWriter, colorunder does test

for turtle color. This was added to herb and carn:

to herb
fd random 10
if equal? colorunder 2 [eat]
if equal? colorunder 1 [h.mate]
end

to carn
fd random 10
if equal? colorunder 1 [eat]
if equal? colorunder 3 [c.mate]
end

Now, if one carnivore passed over another, it would call the c.mate procedure. Likewise, if one

herbivore passed over another, it would call the h.mate procedure.

to h.mate
tell 2 setsh 5
pd stamp pu
setsh 4 fd 20
end

to c.mate
tell 3 setsh 8
pd stamp pu
setsh 7 fd 20
end

These procedures work by first setting the shape of the female to the baby's shape, stamping

this shape to the screen, then setting the shape back to the mother's. Students added the fd 20

commands, to avoid the multiple matings that occurred as adults of the same species remained in

close proximity.

In some cases, no matings occurred because males and females of the same species would never

collide during a simulation run. Students saw that if animals were at different places vertically on

the screen and only moved horizontally, they would never meet. Some students then realized that

11

just as they had used random for fd, they could also use it for heading. Again, they modified the

herb and carn procedures:

to carn
fd random 10
seth 248 + random 45
if equal? colorunder 1 [eat]
if equal? colorunder 3 [c.mate]
end

to herb
fd random 10
seth 68 + random 45
if equal? colorunder 2 [eat]
if equal? colorunder 1 [h.mate]
end

Students decided that the heading should vary by a small range, because when larger values were

used, the animal appeared to be jumping around the screen. Most students chose my suggested

"window" of 45 degrees.

Students did not like to see their animals wrapping around the screen top and bottom, so two

final lines were added to both herb and carn:

if ycor > 0 [descend]
if ycor < -80 [ascend]

The minimum and maximum values for ycor, the "y" coordinate, or vertical location, depend on

what part of the screen a student wanted to allow the animals to roam in. These values varied for

each group.

Descend and ascend simply moved the turtle in question up or down:

to descend
seth 180
repeat 20 [fd 1]
end

to ascend
seth 0
repeat 20 [fd 1]
end

12

Personal Successes

 I found myself forced to tackle some concepts which I had previously avoided. Naming

variables by using word and the number of the turtle in question:

make word "eatcnt who 1 + thing word "eatcnt who

allowed me to write shorter code which was then applicable to all four turtles, rather than

writing four separate procedures.

 The frustrations of creating a procedure that would run under eight different platforms

(IBM- CGA, IBM-EGA, IBM-VGA, Apple II, Apple IIGS, LogoEnsemble, Commodore

64, and Macintosh) forced me to use variables for screen sizes and colors in ways I never

would have otherwise.

 The problem of colorunder not working on the Macintosh the same way as in other

platforms forced me to work out the Pythagorean Theorem in LogoWriter (with twenty

parentheses!)

 The problem of colorunder not working on the Commodore 64 the same way as in other

platforms coupled with a lack of the sqrt function forced me to work out a different

distance test, based on absolute value, in LogoWriter.

 As I was working on this for my own enjoyment, my sixth graders were working on

similar simulations. I was able to anticipate some problems, and guide them more

efficiently.

Successes in the Classroom

This project was largely student-designed and directed, and created more interest than almost any

other project and class I've worked with. New concepts, such as colorunder and random, were

introduced as they were needed. Student understanding and application of these concepts was

rapid and flexible. Previously learned concepts, such as third grade animation, heading, multiple

turtles, and turtle interactions have been reinforced and expanded upon. Students were able to

work in groups, individually, and as a class during this project. Science and classroom teachers

stopped by to see our progress.

Problems with Program Execution

 With CGA graphics on the IBM PC, only three pencolors are possible. Because of this,

animals "mate" with their offspring, and feeding is counted when carnivores pass over

herbivores, even though they have no effect on their prey. On any other platform, at least

5 colors would be available, and offspring could be stamped a different color than their

parents.

 LogoWriter is slow to begin with. This simulation, with up to seven levels of sub-

procedures, runs slowly even on a fast IBM. I have used Apple File Exchange to pull this

simulation as a text file into the Macintosh, the Apple IIe, and the Apple IIGS where I

could tinker with it. On Apples and on slower Macintoshes, it is very slow. There is no

13

loadtext command for Commodore 64 LogoWriter 1.1, so I had to retype it. Because of

memory limitations, extensive modifications had to made for it to run on the C64.(See

Addendum D) Even then, it is painfully slow at 1 MHz.

Problems in the Classroom

As with any semester-long project, it is sometimes difficult to maintain a high level of student

interest. The main obstacle for most students was the limitation of three pencolors with CGA

graphics. Some students found parent-offspring matings disturbing. I challenged the students to

devise solutions to this problem. Laura, who was working with 16-color EGA, chose to use

different colors for the offspring. Austin stamped his babies on the bottom of screen where the

parents didn't go. I did not have time to introduce a distance test, rather than colorunder, and no

student thought of it during our project.

Proposed Experimentation and Additions:

Using the Simulation as a Science/Math Lab Resource

This simulation can now be run a number of times to see the outcomes. Values of variables can

be changed to see how that affects the outcome.

Some questions I have not yet investigated are:

 What happens if predator and prey move at greatly different speeds?

 Is there a way to measure population growth and overpopulation?

 Could animals be made to die as their food source disappears?

 Could waste or pollutants be made to build up during a simulation run? (addressed by one

student, Austin)

 Could a species be made extinct if the ratio of feeding to time becomes unfavorable?

 Could disease or parasite infestation be made to increase as population size increases?

Those students who are interested will now have time to implement some of their suggestions.

Some questions I have looked into are:

 Within one simulation run:

o Do males and females of the same species behave differently?

o Do carnivores and herbivores mate at the same rate?

o Could statistics such as the number of feedings and matings be kept as the

program runs?

 Comparing different simulation runs:

o Will the number of matings or feedings differ greatly each time the program is

run?

o What is the distribution pattern of the feeding or mating frequencies?

14

To collect data on these questions, I added a stats (statistics) procedure to my simulation:
to stats
ef
if member? "stats filelist [loadtext "stats] bottom
(pr :day :eatcnt0 :eatcnt2 :eatcnt1 :eatcnt3
:h.births int :eatcnt2 / 20
:c.births int :eatcnt3 / 20)
if member? "stats filelist [erasefile "stats]
savetext "stats
end

Stats first clears the text screen. If there is already a stats file on the disk, it is loaded. The cursor

is moved to the bottom of the text screen. The values of the following variable are printed on the

screen:

:day
:eatcnt0
:eatcnt2
:eatcnt1
:eatcnt3
:h.births
:int eatcnt2 / 20
c.births
:int eatcnt3 / 20

the day in numbers

male herb feedings

female herb feedings

male carn feedings

female carn feedings

births from herbivore matings

parthenogenic herb births

births from carnivore matings

parthenogenic carn births. The old stats

file is erased from the disk. The new stats

file with this day's data is saved.

This procedure was then added to rollover, so it would be called once a day at 12 midnight:

to rollover
stats
make "time 0
make "meridian "AM make "day :day + 1
end

The simulation was allowed to run overnight, until 521 simulated days' worth of data had been

accumulated. These data were then graphed with PFS First Graphics. The male and female

carnivore feeding rates stay approximately equal during the 521 day run.(See Figure 10) Females

end up slightly higher at the end of the run. Male and female herbivore feeding rate stay equal

until day 150, after which the male rate decreases. Since the movements around the screen are

random, this raises interesting questions. Could the female rates be higher because they spend

more time near the top (carnivore) or bottom (herbivore) of the screen, thus avoiding male

competition? Or is it because the turtles are moving at the rate of who + fd 5, and the females,

15

with their higher turtle numbers, move faster than the males? By making the fds all the same,

this question could be answered.

Herbivore and carnivore births were compared. (See Figure 11) Here, equal rates were expected

for births dues to matings (from random collisions), but higher parthenogenic rates were

expected for herbivores, since they feed much more often than carnivores. Surprisingly, the

carnivore birth rate (1391 births/521 days, or approximately 2 2/3 births/day) was much higher

than the herbivore birth rate (873 births/521 days, or approximately 1 2/3 births/day). I am at a

loss to explain these differences.

In addition to analyzing summed data, numerous daily data can be collected and compared. I

changed rollover to:

to rollover
stats
clearnames
start
end

This will allow the simulation to run for only one day before all variable values are cleared and

the program starts again. I let it run for 112 daily cycles.

I then divided the feedings per day into groups of ten for the herbivores and groups of three for

the carnivores so I could graph the data discretely on a histogram rather than continuously with a

line graph. I counted the feeding frequencies for males and females of both species. For example,

there were 0 days when the herbivore females fed 0-10 times, 5 days when they fed 11- 20 times,

20 days when they fed 41-50 times, etc. (See Figure 12 for herbivores, Figure 13 for carnivores)

All four approach normal distributions. Possibly with a larger sample, a smoother normal

distribution could be seen.

This type of data collection and analysis could be an excellent way to introduce students to

normal distribution, to statistics, and to use of the computer as a math/science laboratory.

16

Addendum A

Ecology Simulation Program Listing

to start
setup
set.grass
grow.grass
set.fish
begin
end

to ef
if not front? [flip]
ct
end

Ct (cleartext) is dangerous to use because if it is used in the command center of your flip side,

ALL text (i.e., all procedures) will be erased. I urge you to put this EraseFront procedure on each

of your pages, and use ef instead of ct. This procedure will clear the text only after you have

flipped to the front side.

17

to setup
rg
ht
ef
cc
make "width 320
make "height 190
make "eatcnt0 0
make "eatcnt1 0
make "eatcnt2 0
make "eatcnt3 0
make "day 1
make "time 0
make "meridian "AM
make "herb.m.s 3
make "herb.f.s 4
make "herb.b.s 5
make "carn.m.s 6
make "carn.f.s 7
make "carn.b.s 8
make "plant.sh 1
make "h.births 0
make "c.births 0
make "male "M

make "female "F See Addenda B - E for additions or deletions here.

setbg :water.5 Keep this as the last line in this procedure even

end as other lines are added.

The setup procedure creates a number of global variables used throughout this program:

:width

:height

:eatcnt0-3

:day

:time

:meridian

:herb.m.s

:herb.f.s

:herb.b.s

:carn.m.s

:carn.f.s

:carn.b.s

:plant.sh

:h.births

:c.births

is the width of the screen in pixels.

is the height of the screen in pixels.

will keep a count of how many times turtles 0-3 have

eaten.

is first set to 1.

is first set to 0.

is first set to AM.

is the herbivore male shape number.

is the herbivore female shape number.

is the herbivore baby shape number.

is the carnivore male shape number.

is the carnivore female shape number.

is the carnivore baby shape number.

is the plant shape number.

will keep a count of herbivore births.

18

:male

:female

will keep a count of carnivore births.

is set equal to the letter M.

is set equal to the letter F.

Modifications to Setup for Different Platforms

Most of these lines set the colors of the fish, plants, and water.(See Table 3a) Other lines are

explained in the addenda.(IBM users see Addendum B. Apple users see Addendum C.

Commodore 64 users see Addendum D. Macintosh users see Addendum E.)

to set.grass
setsh :plant.sh
setc :plant.color
end

Sets the turtle to the plant's shape and color.

to grow.grass
repeat 25 + random 25 [plant.grass]
end

to plant.grass
pu setpos list
random :width ((-1 * random (:height / 2)) + 8)
pd stamp
end

Sets the position of the turtle anywhere along the width of the screen, and anywhere in the

bottom half of the screen.

to set.fish
tell all st
pu home
tell 0 setsh :herb.m.s
tell 1 setsh :carn.m.s
tell 2 setsh :herb.f.s
tell 3 setsh :carn.f.s
tell [0 2] setc :herb.color
tell [1 3] setc :carn.color
end

Sets the four turtles to their proper shapes and colors.

19

to begin
tell 0 herb
tell 1 carn
tell 2 herb
tell 3 carn
circadian
begin
end

Moves each turtle alternately, updates the timer (see circadian), then calls itself recursively.

to herb
seth 248 + random 45
fd who + random 5
if equal? colorunder :plant.color [feed eat.count]
ask 0 [make "pos0 pos]
ask 2 [make "pos2 pos]
if ((hypotenuse :pos0 :pos2) < 16) [herb.mate give.birth]
swim.test
end

The heading is set to the left, anywhere from 248 to 292. The turtle moves forward a number of

steps equal to random 5 plus its turtle number. Who was added to the random so that males and

females would move at different speeds. If the colorunder is equal to the plant color, feed is

called, then eat.count (see eat.count). The positions of the male and female are stored in

variables and these values are passed to hypotenuse. If the distance between the two turtles is

less than 16 steps, herb.mate and give.birth are called. This distance can be changed to a

different value depending on how "attracted" you want your males and females to be to each

other. See swim.test below.

to carn
seth 68 + random 45
fd who + random 5
if equal? colorunder :herb.baby [feed eat.count]
if and (equal? colorunder :carn.baby)
(equal? 0 (random 2)) [feed eat.count]
ask 1 [make "pos1 pos]
ask 3 [make "pos3 pos]
if ((hypotenuse :pos1 :pos3) < 16) [carn.mate give.birth]
swim.test
end

This procedure is identical to herb with the following exceptions:

 The heading is set to the right, from 68 to 112.

 If the colorunder is equal to the herbivore baby color, feed is called, then eat.count (see

eat.count).

20

 If the colorunder is equal to the carnivore baby color, feed and eat.count are called

randomly about 50% of the time (see eat.count).

 Position is used identically, but with different variable names. See swim.test.

to swim.test
if ycor > :height / 2 - 24 [seth 180 swim]
if ycor < 8 - :height / 2 [seth 0 swim]
end

If the turtle is within 24 steps of the top of the screen, the heading is changed to 180 and swim is

called. If the turtle is within 8 steps of the bottom of the screen, the heading is changed to 0 and

swim is called. This keeps the turtle from wrapping around the screen top and bottom.

to swim
repeat :height / 2 [fd 1]
end

The turtle moves away from where it is a distance of half the height of the screen.

to eat.count
cc
make word "eatcnt who 1 + thing word "eatcnt who
if member? who [2 3] [check.feedings] type [The number of

feedings is:]
t13
(type :male [herb=] :eatcnt0 [;] :female [herb =] :eatcnt2)
t13
(type :male [carn=] :eatcnt1 [;] :female [carn =] :eatcnt3)
t13
(type [herb births =] :h.births [; carn. births =] :c.births)
end

This procedure tallies feedings and displays the current values.

make word "eatcnt who 1 + thing word "eatcnt who

This works by adding 1 to the current value (thing) of the variable called :eatcnt0, :eatcnt1,

:eatcnt2, or :eatcnt3. Which eatcnt variable is used is determined by making a word out of

eacnt plus who, the number of the turtle which called this procedure. If the turtle in question is

female [2 3], check.feedings is called.

The current values of the numbers of feedings for each turtle and the number of matings for each

species are displayed in the command center.

21

to check.feedings
if equal? 0
(remainder thing word "eatcnt who 20)
[make word "eatcnt who 1 + thing word "eatcnt who labor]
end

Females will give birth parthenogenically every twenty times they feed. If the number of times

they have fed divided by 20 gives a remainder of zero, labor is called.

to labor
ifelse equal? who 2 [seth 180 descend] [seth 0 ascend]
give.birth
end

If the turtle in question is 2, it will face down and descend, otherwise, it is turtle 3 and it will

face up and ascend. give.birth is called.

to t13
type char 13
end

Moves the cursor to the next line in the command center.

to feed
pe fill pu
end

Feeding is accomplished by erasing what is under the turtle's pen. This can vary from one pixel
to a large area, if the color is contiguous.

to give.birth
birth.check
ifelse equal? who 2
[setsh :herb.b.s setc :herb.baby pd stamp pu setsh :herb.f.s

setc :herb.color seth 270][setsh :carn.b.s setc :carn.baby pd

stamp pu setsh :carn.f.s setc :carn.color seth 90]
swim
end

See birth.check.

If the turtle is #2, the herbivore baby color and shape are set, and stamped. Otherwise, the

carnivore baby color and shape are set and stamped. The shape and color of the female is

restored. See swim above.

22

to birth.check
if member? colorunder
[:herb.baby :carn.baby]
[fd 9 birth.check]
end

If the colorunder the female is already that of her own baby, she will move 9 steps. This

continues until a clear birthing area is found.

to circadian
ef
make "time :time + 1 make "hour (int :time / 60)
make "min remainder :time 60 if equal? :min 0 [water]
if :min < 10 [make "min word "0 :min]
make "display word (word :hour ":) :min
if equal? 0 (remainder :time 1440) [rollover]
(insert [It is day] word :day ", :display :meridian)
if equal? (random 50) (0) [random.grass]
end

This is a completely arbitrary timer. Possibly those with Macintoshes may want to use the clock

built into the computer. Time is incremented by 1. The hour is equal to the integer value of :time

divided by 60. The minutes are equal to the remainder of :time divided by 60. If :min are equal

to zero (i.e., every hour on the hour), the water procedure is called. If :min is less than 10, a zero
is added in front to pad the number. Whenever :time is equal to a multiple of 1440, rollover is

called. The day and time are displayed. Approximately 1 out of 50 times (2%) one grass will be

stamped with random.grass.

to water
if equal? :hour 6
[setbg :water.1] if AND :hour > 6 :hour < 12
[setbg :water.2] if equal? :hour 12
[setbg :water.3 make "meridian "NOON]
if :hour > 12
[make "meridian "PM]
if equal? :hour 18
[setbg :water.4] if :hour > 18
[setbg :water.5]
end

The background color is changed at 6 am, 12 noon, 1 pm, 6 pm, and 7 pm (for the APPLE II,

with its 6 colors, all values of :water.? are black).

23

to random.grass
make "pos pos
make "shape shape
make "color color
set.grass
plant.grass
setsh :shape
setc :color
pu
setpos :pos
end

This procedure will randomly plant grass on the screen. Because all four turtles are already being

used for the four fish, the computer must first store the position, shape, and color of the turtle in

question. After one grass has been stamped, the position, shape, and color are restored. This

happens so fast that only a momentary blinking is seen.

to rollover
make "time 0
make "meridian "AM
make "day :day + 1
end

This will reset the time to 0, and increment the day by 1.

to herb.mate
tell [0 2] repeat 12 [fd 2 rt 30]
repeat 12 [fd 2 lt 30]
tell 2 seth 180
descend
make "h.births :h.births + 1
end

to carn.mate
tell [1 3]
seth 45
repeat 8 [fd 5 rt 90 fd 5 lt 90]
repeat 8 [bk 5 rt 90 bk 5 lt 90]
tell 3 seth 0
ascend
make "c.births :c.births + 1
end

These two procedures are the different courtship dances performed by these two species. The

number of births is incremented by 1.

24

to descend
fd 1
if ycor < 10 + (random 10) - :height / 2 [stop]
descend
end

The turtle will keep moving until it is within 10 to 19 steps of the bottom of the screen.

to ascend
fd 1
if ycor > :height / 2 - 24 - random 24 [stop]
ascend
end

The turtle will keep moving until it is within 24 to 47 steps of the top of the screen.

to hypotenuse :a :b
op (sqrt ((sq ((first :a) - (first :b))) + (sq ((last :a) -

(last :b)))))
end

The inputs to hypotenuse are the position of the two turtles in question. Position is a list of two

numbers (xcor and ycor). Hypotenuse will report the straight line distance between the two

turtles by using the Pythagorean Theorem. The first of a position in its xcor, and the last is its

ycor. The squared differences in the xcors are added to the squared differences of the ycors, and

the square root of this sum is output.

to sq :num
op :num * :num
end

Outputs the square of a number. Used in hypotenuse.

Or

I needed an alternative for the Commodore 64, which does not have sqrt in its LogoWriter 1.1. It

was also suggested to me that a simpler measure of distance be used so that younger students

will understand the procedure (summing the difference in Xs and Ys - a measure known as

Manhattan Grid Distance). My solution was to sum the absolute values of the difference in "x"

values and the difference in "y" values. This will work for any version of LogoWriter.

to hypotenuse :a :b
op (abs ((first :a) - (first :b))) + (abs ((last :a) - (last

:b))))
end

25

to abs :num
ifelse :num < 0 [op -1 * :num] [op :num]
end

You can replace the above hypotenuse procedure with this, but realize that it will no longer

calculate the straight-line distance between two points. It might be a good idea to change its

name here and in herb and carn where it is called.

26

Addendum B

For IBM PC LogoWriter Users

 Add these lines to setup

getshapes
make "carn.color 3
make "herb.color 1
make "plant.color 2

 Replace these lines in setup

make "male char 11
make "female char 12

These replace m and f with the male and female signs.

 Add these lines to setup if you have EGA(16 color) or VGA(256 color) graphics

make "carn.baby 11
make "herb.baby 9

 Add these lines to setup if you have CGA(4 color) graphics

make "carn.baby 3
make "herb.baby 1

Because there are only four pen colors with CGA, the offspring will be the same colors as

their parents. This will lead to higher mating and feeding counts.

 Add these lines to setup if you have CGA or EGA graphics

make "water.1 6
make "water.2 10
make "water.3 13
make "water.4 5
make "water.5 0

 Add these lines to SETUP if you have VGA graphics

make "water.1 18
make "water.2 17
make "water.3 16
make "water.4 5
make "water.5 207

More shades of blue are available with VGA colors.

27

Addendum C

For the Apple II

For Apple II LogoWriter Users

 Add these lines to setup

getshapes
make "carn.color 3
make "carn.baby 4
make "herb.color 1
make "herb.baby 5
make "plant.color 2
make "water.1 0
make "water.2 0
make "water.3 0
make "water.4 0
make "water.5 0

 Replace these lines in setup

make "width 280
make "height 180

The screen heights and widths are smaller for the Apple II.

For Apple IIGS (with or without Ensemble) LogoWriter Users

 Add these lines to setup

make "carn.color 3
make "carn.baby 11
make "herb.color 1
make "herb.baby 9
make "plant.color 2
make "water.1 6
make "water.2 10
make "water.3 13
make "water.4 5
make "water.5 0

 Replace these lines in setup

make "male char 11
make "female char 12

28

These replace m and f with the male and female symbols.

For Apple IlGS Non-Ensemble LogoWriter users

 Add this line to setup

getshapes

29

Addendum D

For Commodore 64 LogoWriter Users

 Do not type in the following procedures

eat.count
check.feedings
circadian water
rollover
sq :num
hypotenuse

 Add these lines to setup

make "carn.color 2
make "carn.baby 10
make "herb.color 1
make "herb.baby 15
make "plant.color 3

 Delete these lines from setup

make "eatcnt0 0
make "eatcnt1 0
make "eatcnt2 0
make "eatcnt3 0
make "day 1
make "time 0
make "meridian "AM
make "h.births 0
make "c.births 0
make "male "M
make "female "F
setbg :water.5

 Delete this command from begin: circadian

 Delete this command from herb: eat.count

 Delete this command found in two places in carn: eat.count

 Delete this line from herb.mate: make "h.births :h.births + 1

 Delete this line from carn.mate: make "c.births :c.births + 1

 Add these procedures:

to xcor
op first pos
end

30

to ycor
op last pos
end

Use the second hypotenuse (Manhattan Grid Distance) procedure. There is no sqrt command in

the Commodore 64's LogoWriter 1.1.

to abs :num
ifelse :num < 0 [op -1 * :num] [op :num]
end

to hypotenuse :a :b
op (abs ((first :a) - (first :b))) + (abs ((last :a) - (last

:b))))
end

31

Addendum E

For Macintosh LogoWriter Users

 Add these lines to setup

make "carn.color 6
make "carn.baby 37
make "herb.color 8
make "herb.baby 9
make "plant.color 3
make "water.1 171
make "water.2 188
make "water.3 208
make "water.4 242
make "water.5 180

 Replace these lines in setup

make "width 495
make "height 220

The screen heights and widths are larger for the Macintosh.

Table 1: Shapes Used

Shape Variable
:plant.sh

:herb.m.s

:herb.f.s

:herb.b.s

:carn.m.s

:carn.f.s

:carn.b.s

Shape
1

3

4

5

6

7

8

Object Category
plant

male herbivore

female herbivore

baby herbivore

male carnivore

female carnivore

baby carnivore

My Simulation
grass

fish

fish

fish

fish

fish

fish

Student Simulation
tree

giraffe

giraffe

giraffe

lion

lioness

lion cub

32

Table 2: Turtle Identities

Turtle Number

0

1

2

3

Identity

male herbivore

male carnivore

female herbivore

female carnivore

Table 3a: Colors Used in my Simulation

Color-

Variable

:carn.color

:herb.color

:plant.color

:carn.baby

:herb.baby

:water.1

:water.2

:water.3

:water.4

:water.5

IBM-

CGA

magenta-3

white-1

cyan-2

magenta-3

white-1

brown-6

lt cyan-10

lt blue-13

blue -5

black -0

IBM-EGA

magenta-3

white-1

cyan-2

lt magenta-

11

t gray-9

brown-6

lt cyan-10

lt blue-13

blue -5

black-0

IBM-VGA

magenta-3

white -1

cyan-2

lt magenta-

11

lt gray-9

lavender-18

med. blue-

17

lt blue-16

blue-5

dk purple-

207

Macintosh

magenta-6

lt gray-8

green-3

lt magenta-

37

gray-9

lt blue-171

bl-green-188

grn-blue-208

dark blue-

242

lt purple -

180

Apple-IIGS

magenta-3

white-1

cyan-2

ltmagenta-

11

lt gray-9

brown-6

lt cyan-10

lt blue-13

blue-5

black -0

AppleII

purple-3

white-1

green-2

orange-

4

blue-5

black-0

black-0

black-0

black-0

black-0

C 64

red-2

white-

1

cyan-3

pink-

10

gray-

15

Table 3b: Colors Used in the Student Simulation

Color Number
0

1

2

3

4

5

15

Color
black

white

cyan

magenta

red

blue

light green

33

Addendum F

A Typical Student Program Listing

This is an edited version of the program written by The EcoGroup. (The EcoGroup: Sandy Cid,

Vanessa Cook, Kristina Negron, Maritza Schaeffer, and Laura Stickney Class of 1999 St. Hilda's

& St. Hugh's School) I have removed all of their predetermined scenarios for the sake of space

and simplicity.

to startup
getshapes
scenery
setup
move
end

to scenery
scene
pond
trees
sun
end

to scene
rg
setbg 15
setc 5
rt 90
fd 320
pu
lt 90
fd 15
pd
fill
end

to pond
pu
home
bk 30
rt 90
fd 145
setsh 12
setc 5
repeat 6 [lt 60 fd 7 pd stamp pu]
end

34

to trees
pu
home
bk 45
rt 90
setsh 1
setc 2
repeat 12 [pd stamp pu fd 32]
fd 16
lt 90
bk 20
rt 90
repeat 12 [pd stamp pu fd 32]
end

to sun
pu home
rt 90
fd 120
setsh 12
setc 4
lt 90
fd 68
pd
stamp
end

to setup
tell all
st
pu
home
tell [0 2]
setc 1 seth 90
tell [1 3] setc 3
seth 270
tell 0 setsh 3
tell 1 setsh 6
tell 2 setsh 4
tell 3 setsh 7
end

35

to move
tell 0 herb
tell 1 carn
tell 2 herb
tell 3 carn
move
end

to carn
fd random 10
seth 248 + random 45
if equal? colorunder 1 [eat]
if equal? colorunder 3 [c.mate]
if ycor > 0 [descend]
if ycor < -80 [ascend]
end

to herb
fd random 10
seth 68 + random 45
if equal? colorunder 2 [eat]
if equal? colorunder 1 [h.mate]
if ycor > 0 [descend]
if ycor < -80 [ascend]
end

to eat
pe
fill
pu
end

to c.mate
tell 3
setsh 8
pd
stamp
pu
setsh 7
fd 20
end

36

to h.mate
tell 2
setsh 5
pd
stamp
pu
setsh 4
fd 20
end

to descend
seth 180
repeat 20 [fd 1]
end

to ascend
seth 0
repeat 20 [fd 1]
end

As stated earlier, if you want to test for distance rather than colorunder (you must on the

Macintosh and Commodore 64), you will need to replace if colorunder = 1 [h.mate] in herb

with:

ask 0 [make "pos0 pos]
ask 2 [make "pos2 pos]
if ((hypotenuse :pos0 :pos2) < 16) [h.mate]

In carn you will need to replace if colorunder = 3 [c.mate] with:

ask 1 [make "pos1 pos]
ask 3 [make "pos3 pos]
if ((hypotenuse :pos1 :pos3) < 16) [c.mate]

You will then need to add the hypotenuse and sq procedures for straight-line distance (not for

the C64), or hypotenuse and abs for Manhattan Grid Distance, found on the last page of my

program listing.

37

Figure 9: Ecology Simulation Flow Chart

start

setup

set.grass

grow.grass

plant.grass

set.fish

begin

herb

feed

eat.count

check.feedings

labor

descend

give.birth

birth.check

swim

hypotenuse

sq

herb.mate

give.birth

birth.check

swim

swim.test

swim

carn

feed

eat.count

check.feedings

labor

ascend

give.birth

birth.check

swim

hypotenuse

carn.mate

give.birth

birth.check

swim

swim.test

38

swim

circadian

water

rollover

random.grass

set.grass

plant.grass

begin
end

Figure 1: The screen after the simulation has run for a while.

Note herbivore and carnivore babies.

(Top: Teacher simulation - Bottom: Student simulation)

Figure 2: Shape #1 - Plant

(Top: Teacher simulation - Bottom: Student simulation)

39

Figure 3: Shape #3 - male herbivore

(Top: Teacher simulation - Bottom: Student simulation)

40

Figure 4: Shape #4 - female herbivore

(Top: Teacher simulation - Bottom: Student simulation)

41

Figure 5: Shape #5 - baby herbivore

(Top: Teacher simulation - Bottom: Student simulation)

Figure 6: Shape #6 - male carnivore

(Top: Teacher simulation - Bottom: Student simulation)

42

Figure 7: Shape #7 - female carnivore

(Top: Teacher simulation - Bottom: Student simulation)

43

Figure 8: Shape #8 - baby carnivore

(Top: Teacher simulation - Bottom: Student simulation)

44

45

