
1

 www.logofoundation.org

A Full-Screen LogoWriter PrintShape Procedure
by
Thomas F. Trocco

© 1993 Thomas F. Trocco

Computer & Science Department Chiar

Computer Teacher, Grades 2 - 8

St. Hilda's & St. Hugh's School

New York, NY

You may copy and distribute this document for educational purposes provided that you do not charge

for such copies and that this copyright notice is reproduced in full.

Acknowledgements

Thanks to Michael Tempel, Steve Neiman, and Becque Olson for their suggestions.

http://www.logofoundation.org/

2

Introduction

LogoWriter allows the user to change the turtle's shape to any of 30 or 90 additional shapes

(depending on your platform). Some of these come ready-made with the program while others are

blank. Any of these (except shape 0, the turtle) may be modified. Simply type shapes in your

command center, and you'll be on your shapes page. By pressing the spacebar and using the arrow

keys (or mouse) you can add or take away dots in a 16 X 16 grid (or 20 X 20 on the MAC). Users can

then change the turtle's shape to any of these with the setsh command (e.g. setsh 21). Once a new

shape has been chosen, it can be used just like the turtle (although you won't see it rotate as you

change its heading). You can use these shapes for animation, for drawing, for stamp-ing and for

shade-ing.

I introduce shape creation in the second grade, and have always run into two major problems which

may sound familiar to you.

First, I introduce the shapes page to my students, they create a new shape, and they then want to print

it out as they see it on the screen, in its full size. I cannot tell you how many times I've explained to

students that the large size cannot be printed, but they still really desire to see a large version of their

creation on paper. I've often thought it would be great to have a way to print out the page as it is seen

on the screen.

Second, students want their shape to face the opposite way, but have trouble figuring out what dots to

place. I've often thought is would be great to be able to have a print-out of the shapes page grid in

both normal and reversed left/right for easier shape reversal. (LogoEnsemble and Macintosh

LogoWriter users already have the ability to reverse their shapes on the shapes page).

And finally, for myself: While writing a paper on an ecology simulation, I realized that I wanted to

have large grid printouts of my shapes for my readers so they could re-create my shapes if they

desired.

So I sat down and tackled the task. The trick was to somehow read what pixels were used in a

particular shape, store that information, draw a large grid on the screen, and fill in the appropriate

spaces from the information stored. To read the information, I stamped the shape on the screen and

tested for colorunder. To store the information, I created a variable list for each row of pixels, with

'0' for off and '1' for on. What follows is an annotated program listing.

3

PrintShape Procedure Program Listing

to ins.1
pr [PrintShape Procedure]
pr [(c) 1993 by Thomas Trocco]
pr [Computer Dept. Chair,]
pr [St. Hilda's & St. Hugh's School.]
pr [619 West 114th Street]
pr [New York, NY 10025]
pr "
pr [Written January 28-30, 1993]
pr "
pr [This program will display a shape in a large grid similar to

that seen on the flip side of a SHAPES page.]
pr "
end

This is the Master, or Super Procedure:

to printshape
clear.all
setup
ins.1
ins.2
set.array 0
grid
small
ins.3
check.set
check 0
make "row 0
set.fill
ins.4
ins.5
ins.6
end

4

This clears the graphics screen, command center, text screen, variable values, and hides the turtle:

to clear.all
rg
cc
ef
ht
clearnames
end

to ef
if not front? [flip]
ct
end

Ct (cleartext) is dangerous because if it is used in the command center while the flip side is showing,

all text (i.e., all procedures) will be erased. I urge you to put this EraseFront procedure on each of

your pages, and use ef instead of ct. This procedure will clear the text only after you have flipped to

the front side.

If you are using Apple IIGS LogoWriter type this:

to setup
getshapes
make "lines 17
make "dist 160
end

If you are using LogoEnsemble type this:

to setup
make "lines 17
make "dist 160
end

If you are using MSDOS LogoWriter type this:

to setup
getshapes
make "lines 17
make "dist 160
end

5

If you are using Macintosh LogoWriter type this:

to setup
make "lines 21
make "dist 200
end

For Macintosh LogoWriter, also make these changes:

 in the procedure small change

setpos [-108 0] to setpos [-107 0]

and label :shape to pd label :shape pu

 in the procedure grid (occurs twice) change

setpos [-80 -80] to setpos [-80 -100]

 in the procedure set.fill change
setpos list -73 (75 - :row * 10)

to
setpos list -63 (85 - :row * 10)

Setup sets the size of the grid to be drawn on the screen (16 X 16 boxes, or 17 X 17 lines for

MSDOS and Apple IIGS computers; 20 X 20 boxes, or 21 X 21 lines for the Macintosh) and the

width of the grid (10 steps * the number of boxes).

to ins.2
pr [Please type in the number of the shape you wish to print.]
pr "
make "shape first readlist
ef
end

Ins.2 waits for input and sets the variable "shape equal to it. First is necessary, even though only

one number is being typed, so that shape is set equal to a number, rather than a one-member list.

Without first you'll later receive a message such as

setsh doesn't like [21] as input.

to set.array :row
make word "pixels :row []
if equal? :row :lines - 2 [stop]
set.array :row + 1
end

Printshape passes 0 as input to set.array. A variable (pixels0), made from the word pixels and the

input, 0, is given the value [] (an empty list). This procedure continues recursively, making more

variables, pixels1, pixels2, etc. until :line - 2 is reached (15 on MSDOS and AppleIIGS computers,

19 on Macintosh computers). Thus, one variable for each row is created. All have empty lists as their

6

values.

to grid
pu
setc 2
setpos [-80 -80]
repeat :lines
[pd fd :dist bk :dist pu rt 90 fd 10 lt 90]
pu
setpos [-80 -80]
rt 90
repeat :lines
[pd fd :dist bk :dist pu lt 90 fd 10 rt 90]
end

Grid draws a grid in color 2 on the screen with the dimensions :lines by :lines (17 X 17 on MSDOS

and Apple IIGS computers , 21 X 21 on Macintosh computers.)

to small
pu
setc 1
seth 0
setpos [-140 0]
label :shape
setpos [-108 0]
pd setc 2
setsh :shape
stamp
setc 1
end

Small labels the number of the shape entered in ins.2 and stamps it in color 2; sets the color to 1

when finished.

to ins.3
type [Please wait while the shape is scanned....]
end

7

to check.set
pu
ht
setsh 0
seth 90
make "y 9
end

Check.set sets the heading of the turtle to 90deg., sets :y equal to 9 to be used in check.

to check :row
set.row :y
repeat :lines - 1
[ifelse equal? colorunder 2
[pd fd 0 pu make word "pixels :row se thing word "pixels :row 1]
[make word "pixels :row se thing word "pixels :row 0] fd 1]
make "y :y - 1
if not equal? :dist 200
[if equal? (int :y / 5) (:y / 5) [make "y :y - 1]]
if equal? :row :lines - 2 [stop]
check :row + 1
end

Set.row :y sets the position of the turtle as [-116 9], the upper left hand corner of the stamped shape.

Next the turtle tests for colorunder. If the colorunder is 2 (i.e., if the stamped shape uses that

position) a '1' is concatenated to the current value of the variable for that row (i.e., pixels0). If the

colorunder is not 2 (i.e., if the stamped shape does not use that position), a '0' is concatenated to the

current value of the variable for that row. The turtle then moves one step to the right and tests again.

This continues for :lines - 1 times (equal to the width of the shape in pixels). Next :y is decreased by

1. If the value of :dist is not equal to 200 (i.e., if the computer is NOT a Macintosh), :y is again

decreased by 1 if the value of :y is a multiple of 5. This is necessary because on MSDOS and

AppleIIGS computers, for every fifth vertical pixel that is addressed, the turtle doesn't move. This

was designed into LogoWriter because pixels are vertical rectangles, not squares, and without this

correction, shapes created with LogoWriter would be elongated vertically. Pixels are square on the

Macintosh, so this correction is not applied to that computer. Check calls itself recursively so it can

check the next row of pixels. Check will stop when the :row it is on is equal to :lines - 2 (i.e., when

it has checked all rows).

8

For example, shape 0, the turtle, has dots in the following pattern:

 R O W S C O L U M N S ->

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

 * *

1

 * * * *

2

 * * * *

3

 * *

4

 * * * * * *

5

 * * * * * * * * * *

6

 * * * * * * * *

7

 * * * * * * * * * *

8

 * * * * * * * * * *

9

10 * * * * * * * * * *

11 * * * * * * * *

12 * * * * * * * *

13 * * * * * *

14

15

9

As the turtle moves from left to right, scanning each position in the 16 X 16 grid, the following

values would be stored:

 R O W S C O L U M N S ->

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Variable

Name

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pixels0

0

 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 Pixels1

1

 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 Pixels2

2

 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 Pixels3

3

 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 Pixels4

4

 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 Pixels5

5

 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 Pixels6

6

 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 Pixels7

7

 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 Pixels8

8

 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 Pixels9

9

10 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 Pixels10

11 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 Pixels11

12 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 Pixels12

13 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 Pixels13

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pixels14

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pixels15

These variables will later be used to fill in the squares on the grid.

to set.row :y
setpos list -116 :y
end

to set.fill
pu
setpos list -73 (75 - :row * 10)
end

10

Set.fill places the turtle in the proper position (upper left corner) to begin filling in squares on the

grid.

to ins.4
cc
type [|Do you want your shape (N)ormal or (R)eversed left-right|]
type char 13
ifelse equal? readchar "n [cc fill.normal] [cc fill.reverse]
end

Fill.normal will read the variable lists from left to right; fill.reverse will read them from right to left.

to fill.normal
if equal? first (thing word "pixels :row) 1
[pd fill pu]
fd 10
if (count thing word "pixels :row) > 1 [make word "pixels :row bf

thing word "pixels :row fill.normal stop]
if :row < :lines - 2 [make "row :row + 1 set.fill fill.normal]
end

If the first member of the list is a '1', the square will be filled. The turtle moves 10 steps to the right.

If the count of the number of items in the list is greater than 1, the first member of the list is removed

(with ButFirst), and the new shorter list is passed to fill.normal. This continues across the row until

the last item is used. :row is increased by one; the turtle is moved down one row (set.fill), and the

procedure is called recursively, filling in the next row. This continues until all rows have been filled

(when :row = :lines - 2)

to fill.reverse
if equal? last (thing word "pixels :row) 1
[pd fill pu]
fd 10
if (count thing word "pixels :row) > 1 [make word "pixels :row bl

thing word "pixels :row fill.reverse stop]
if :row < :lines - 2 [make "row :row + 1 set.fill fill.reverse]
end

Fill.reverse is identical to fill.normal, except that the list is read backwards (with last), and the last

member is removed each time (with ButLast).

to ins.5
cc
type [Type "P" to print this screen.]
if equal? readchar "P [printscreen printtext]
cc
end

11

If a "P" is typed, the screen will be printed. The printtext command is there to force a form feed for

those printers that need it.

to ins.6
cc
type [Type "Y" if you would like to see another shape.]
ifelse equal? readchar "Y [printshape] [cc]
end

If a "Y" is typed, printshape will be run. Otherwise the command center is cleared and the program

ends.

Following are some sample shape printouts, normal and reversed.

12

13

