

1

 www.logofoundation.org

Fuzzy Logo
by
Brian Silverman and

Michael Tempel

© 1985 LCSI

© 1991 Logo Foundation

You may copy and distribute this document for educational purposes provided that you do not

charge for such copies and that this copyright notice is reproduced in full.

Logo provides idealized environments for exploring ideas. The Turtle Geometry Microworld is a

streamlined setting in which people may become acquainted with geometry and mathematics

more generally. Feedback is quick and accurate.

repeat 4 [forward 100 right 90]

reliably and precisely produces a square. The idea of squareness, four equal sides and 90 degree

corners, emerges from the process of telling the turtle to draw a square.

But what if Turtle Geometry was not quite so clean and neat? What if forward and right were

somewhat inaccurate? What if these commands didn't work at all? Would Turtle Geometry lose

its educational value, or would new learning possibilities emerge instead?

We began with two separate ideas. One was to create a Logo in which forward, back, right, and

left worked, but with a random error of up to ten percent. Forward 100 moves the turtle forward

anywhere from 90 to 110 steps. This is not unlike the real world in which reliable systems,

including the computers on which Logo runs, are engineered using imprecise components. Our

expectation was that people would develop strategies utilizing feedback to correct or manage the

defects we introduced into Logo.

A second starting point was to make a Logo in which forward, back, right, and left didn't work

at all. By trying to rebuild Turtle Geometry people would become familiar with trigonometry and

explore the relationship between the relative system of Turtle Geometry and the absolute

http://www.logofoundation.org/

2

Cartesian system which is also part of Logo.

As we perpetrated our funny Logos on groups of teachers during workshops, the two topics

merged. We also got more than we expected. New ideas came up. The strategies that people used

to cope with our broken Logos fell into four distinct categories:

1. Feedback - In trying to get to a particular point, make a move. Then see where you

actually ended up as compared to where you wanted to be. Use this information to correct

your position.

2. Law of Large Numbers - Make your move in many small steps rather than one big one.

Lots of little errors tend to cancel each other out.

3. Start Again - Forget about the messed up Turtle Geometry commands and make your

own accurate ones by using the Cartesian system and trigonometry. The Turtle Geometry

primitives can be built out of setpos, setheading, sin, and cos.

4. Undo the Damage - Figure out how we broke Logo and then fix it. This gets into some of

the more obscure areas of Logo, such as burying procedures and redefining primitive

procedures.

It may be argued that these topics should not all be together in one paper or in one workshop

since they are not well related to each other. They are presented together here because they

existed together in practice, in workshops.

Let's look at each of the four strategies more closely. We'll refer to our broken versions of the

primitive turtle commands as fuzzy.forward, fuzzy.right, etc. to distinguish them from the well

behaved versions of these commands. In workshops we generally redefine the primitives

themselves into fuzziness.

1. Feedback

Start with fuzzy.forward 100. This leaves you somewhere near your goal. You can find out

where you are by using the Logo reporter pos (or xcor and ycor). If the turtle starts at home with

a heading of 0, then

fuzzy.forward 100
print ycor

will move the turtle forward about 100 steps. In a normal Logo, forward 100 from home would

leave you at a ycor of 100. In our fuzzy Logo you're somewhere between 90 and 110.

Now, we haven't tinkered with the reporters. Pos, xcor, ycor, heading, etc. are all accurate. This

is not unlike the real world. You can buy an instrument at your local electronics supermarket that

measures resistance to a far greater precision than the tolerances of its own resistors and other

components.

3

Now that you know where you ended up you can plan your next move. Let's say that ycor is 95.

You're five steps from the goal, so just go fuzzy.forward 5. But, you might argue,

fuzzy.forward is off by up to 10%, so most likely you'll miss again. This is true, but with a 10%

error, fuzzy. forward 5 will be off by half a step at most. Let's take the worst case.

Fuzzy.forward 5 moves the turtle 5.5 steps high by the full 10%. Now you're only .5 steps away.

Fuzzy.back .5 results in an actual step back of between .45 and .55 steps. This leaves you within

.05 steps of the goal, an error of only 1/20th of 1%.

After one move the maximum error is 10%. The second move leaves you off by no more than

1%. After the third move you are within 0.1%. You can continue if you wish, but this accuracy is

already greater than the resolution of the graphics screen.

Starting at home with a heading of 0, we can summarize this solution in a procedure:

to fixed.forward :amount
name :amount "goal
repeat 3 [fuzzy.forward :goal - ycor]
end

Since ycor starts at 0, the first fuzzy.forward tries to go the full amount. In the second repetition

the input to fuzzy.forward is the difference between the goal and the y-coordinate that resulted

from the first fuzzy.forward. The third fuzzy.forward uses the difference between the goal and

the y-coordinate resulting from the second fuzzy. forward.

Three repetitions is arbitrary. The more corrections, the greater the precision.

It is possible to overshoot the goal. In that case ycor will be greater than :goal. The input to

fuzzy.forward will be negative so the turtle will move back.

This version of fixed.forward only works when the heading is 0 and the starting y-coordinate is

0. Here's a more general solution:

to fixed.forward :amount
name list
(:amount * sin heading)
(:amount * cos heading)
"goal
repeat 3 [fuzzy.forward distance :goal]
end

Actually, the first line of this procedure is by itself a fix for fuzzy.forward. Look at strategy

number 3 below. Here's another approach using feedback:

4

to fixed.forward :dist
if :dist < 0
[rt 180 fixed.forward - :dist rt 180 stop]
name pos "start
if :dist < 0.01 [stop]
fuzzy.forward :dist
fixed.forward :dist - distance :start
end

Fixed.forward needs a distance procedure:

to distance :point
op sqrt sum
sq xcor - first :point
sq ycor - last :point
end

to sq :n
op :n * :n
end

This fixed.forward stops when we are within 0.01 turtle steps of the goal. We could have insisted

on greater accuracy by using 0.001. What is of more interest is that we have chosen to use an

absolute value rather than a percentage of the original distance. We limit our absolute error to .01

turtle steps. Fixed.forward 100 would be precise to 0.01%. But fixed.forward 10 would only be

accurate to within 0.1% and fixed.forward 1 would be within 1%. Here's a version that achieves

an accuracy of 0.1% regardless of the distance being attempted:

to fixed.forward :dist
name 0.001 * :distance "tolerance
fx.fd :dist
end

to fx.fd :dis
if :dis < 0 [rt 180 fx.fd - :dis rt 180 stop]
name pos "start
if :dis < :tolerance [stop]
fuzzy.forward :dis
fx.fd :dis - distance :start
end

This is not necessarily a better solution. You just have to decide whether absolute or percentage

error is important to you. This depends upon what you're doing. If you plan to attend a concert

that begins at 8 o'clock and you want to avoid waiting more than a few minutes at the theatre, you

will need to arrive within, let's say, five minutes either side of 7:55. If the concert begins in an

hour this represents a much higher percentage error than if the concert is a year from now, but the

5

absolute error is what counts.

On the other hand, you may want to know how fast you can run over a given distance. If the

distance is 10 kilometers, an absolute error in measurement of 10 meters would throw your

calculation off by 0.1%. If the distance were 100 meters the same 10 meters would represent a

10% error. In this case, percentage error is more important.

Now there's still a minor bug in fixed.forward. You might not want to let the turtle overshoot its

goal since this leaves extra little lines sticking out of the corners of your drawings. There is a

solution. Don't try to go fuzzy.forward the full distance. Instead, try a distance that will bring

you to your goal when a maximum error occurs on the high side. In other words, 110% of the

amount you choose should bring you to your goal.

fuzzy.forward 1 / 1.1 * :amount

will do the trick. Instead of an error of plus or minus up to 10% you get results that range between

about 82% of the goal and the goal itself. The trade-off for not overshooting is that you

potentially have a larger error to correct for. This really isn't a problem since you can achieve any

degree of accuracy you need by making more moves at your target.

This strategy also allows us to simplify fixed.forward. Since :dist - distance :start will only be

negative if fuzzy.forward :dist overshot the goal, we no longer need the first line of the

procedure.

Here's an appropriate modification of the version of fixed.forward that achieves an absolute level

of accuracy.

to fixed.forward :dist
name pos "start
if dist < 0.01 [stop]
fuzzy.forward 1 / 1.1 * :dist
fixed.forward :dist - distance :start
end

How can we fix fuzzy.right using feedback? Here's a solution that is similar to the fix for

fuzzy.forward:

to fixed.right :turn
if (abs :turn) < 0.01 [stop]
name heading "start
fuzzy.right :turn
fixed.right :start - :turn
end

6

to abs :num
op if :num < 0 [-:num] [:num]
end

There are many examples of feedback mechanisms in the real world. A thermostat controls room

temperature in this way. The heating system just pumps out heat. It has no way of dispensing

well-measured amounts. The thermostat can measure the actual temperature. When it gets above

a certain point, the heating system is shut down. This causes the temperature to drop and when it

reaches a predetermined low point the heat goes back on. You can decide how precisely to

control the heat by adjusting the interval between the "turn on" and "turn off" temperatures.

The amount of water going into a toilet's tank is controlled by feedback. After each flush, the tank

must fill with a fixed amount of water, enough for the next flush, but not so much as to overflow.

The amount of water is never actually measured. Instead, the tank just starts to fill. As the water

level rises, the float attached to the shutoff valve also rises, eventually shutting the incoming

water flow when it reaches a certain height.

Cruise controls on cars sense changes in speed and adjust the amount of gasoline being fed to the

engine.

The average temperature of the world is a fairly pleasant 15 degrees Celsius (59 degree

Fahrenheit). However, because of uneven heating of the Earth's surface, there are wide variations

from this mean over time and in different places. The system's attempts to even things out create

weather.

Lieutenant Island in Welfleet harbor on Cape Cod hosted populations of rabbits and foxes. The

foxes controlled the size of the rabbit population by eating them. A well-fed fox population

would increase in size and eat more rabbits. The reduction in the rabbit population would cause

some foxes to go hungry and die before reproducing. The drop in the fox population would allow

more rabbits to survive.

This natural feedback mechanism kept the populations stable within fairly narrow limits until two

years ago when an island resident shot all the foxes. The island is now overrun by rabbits and a

new feedback mechanism may be coming into play, balancing the rabbit population with the

availability of edible vegetation.

This raises an interesting question. When do stable feedback mechanisms break down? Often

some additional factor is introduced into the system. If you open all your windows on a cold day

the temperature may drop far below the minimum setting of your thermostat.

7

2. Law of Large Numbers

When we first created our fuzzy Logo we tried some familiar turtle graphics activities.

repeat 4 [fuzzy.forward 100 fuzzy.right 90]

produced something that looked like it was trying to be a square.
repeat 3 [fuzzy.forward 100 fuzzy.right 120]

almost gave us a triangle.

Then we tried

repeat 360 [fuzzy.forward 1 fuzzy.right 1]

which to our initial surprise, produced an almost perfect circle! Why?

Well the 360 errors in fuzzy.forward 1 and in fuzzy.right 1 tended to cancel each other.

Fuzzy.forward 100 has an even chance of moving the turtle anywhere between 90 and 110 steps.

However, repeat 100 [fuzzy.forward 1] is very unlikely to end up far off.

To help see why, let's flip some coins. One coin gives you two possibilities, Head or Tail. With

two coins there are four combinations (HH HT TH TT). Extending the pattern we have:

Number of combinations of N coins that contain H heads

number of heads (H)

0 1 2 3 4 5 6 7 8 9 10

number 1 1 1

of coins 2 1 2 1

(N) 3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

Let's examine how this works with ten flips. First of all, how many possible outcomes are there

for these ten flips? The first flip has two possible outcomes. For each of these two, there are two

possible outcomes of the second flip, making a total four possibilities (HH HT TH TT). With

three flips there are eight combinations (HHH HHT HTH THH HTT THT TTH TTT). With

8

ten flips there are 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 1024 possibilities.

Now what's the probability of getting "about half" heads as compared to getting "mostly heads"?

Let's say that "about half" of ten coins is 4, 5 or 6, and that "mostly heads" is 8, 9 or 10. The

probability of getting about half heads is 210 + 252 + 210 out of 1024, or 672 / 1024 = 0.656, a

two out of three chance. The probability of getting "mostly heads" is 1 + 10 + 45 out of 1024, or

56 / 1024 = 0.055, only a little better than one in 20.

3. Start Again

A third approach to working with our fuzzy Logo is to forget about the broken turtle commands

and start again from scratch. Try to build new turtle commands out of other parts of Logo.

Turtle geometry is a relative system. Forward moves the turtle some amount from where it is.

There is no reference to an absolute frame of reference. Similarly, right rotates the turtle some

amount from the direction in which it is headed. It doesn't matter which way it was pointing.

Another geometry that is also built into Logo is the Cartesian system. There is a frame of

reference in which position is referred to by x and y coordinates and orientation is indicated by

headings of 0 to 360 degrees. setpos (or setx and sety) sends the turtle to a given place on the

screen regardless of where it was. Setheading orients the turtle independent of which way it was

initially pointing.

There are also reporters that tell you where the the turtle is (pos, xcor, and ycor) and which way

it's pointing (heading). The relative system of turtle geometry can be built by using these

reporters to tell you where you are and which way you're heading. Based on that information, the

absolute commands may be used to change position and heading.

Let's start with the simple case in which the turtle is at "home" (a position of [0 0]) and has a

heading of 0.

We can write a fixed.forward:

to fixed.forward :distance
sety :distance
end

This works only for the first move.

to fixed.forward :distance
sety ycor + :distance
end

9

works as long as the heading is 0. Another special case is when the turtle has a heading of 90.

to fixed.forward :distance
setx xcor + :distance
end

In general we need to distribute :distance proportionally into x and y components depending

upon heading. If heading is 0, then the full :distance is in the y direction. At a heading of 5

degrees, there's some movement in the x direction, but it's mostly in the y direction.

Trigonometry takes care of the apportioning of :distance into the proper x and y components. In

fact that's exactly what sin and cos do for a living. A general fixed.forward is

to fixed.forward :distance
setpos list
(:distance * sin heading)
(:distance * cos heading)
end

We can build a fixed.right out of heading and setheading:

to fixed.right :turn
setheading heading + :turn
end

4. Undo the Damage

In presenting fuzzy Logo we generally give people a Logo disk with a "startup" file that

automatically creates the fuzzy turtle commands. When Logo is booted, it looks for a file named

startup. If such a file is found it is automatically loaded. When any file is loaded, Logo looks for

the special name startup. If it is found, and if it is the name of a list, that list is run as a list of

instructions.

This means that you can automatically cause a file to load and procedures to run upon booting

Logo. We created a startup file that contained the procedures needed to redefine forward, back,

right, and left into fuzziness and then erase most of the evidence of our crime. However, there

were enough clues left for some people to figure out what we did.

10

Here's what was in the Apple Logo II version of our startup file:

to setup
makeolds
makenews
er [setup makeolds makenews]
er [cfd crt cbk clt]
er "startup
end
to makeolds
copydef "fd "oldfd
copydef "bk "oldbk
copydef "rt "oldrt
copydef "lt "oldlt
end

to makenews
copydef "cfd "fd
copydef "cfd "forward
copydef "cbk "bk
copydef "cbk "back
copydef "clt "lt
copydef "clt "left
copydef "crt "rt
copydef "crt "right
end

to cfd :n
oldfd nearly :n
end

to cbk :n
oldbk nearly :n
end

to clt :n
oldlt nearly :n
end

to crt :n
oldrt nearly :n

11

end

to cleft :n
oldlt nearly :n
end

to cright :n
oldrt nearly :n
end

to cback :n
oldbk nearly :n
end

to cforward :n
oldfd nearly :n
end

to nearly :n
output .9 * :n + :n * 2.n3 * random 100
end

make "startup [setup buryall]

The last line of the file shows that startup is the name of the list [setup buryall], so these two

procedures are run when the file is loaded.

Setup first calls makeolds which uses copydef to make copies of the four turtle commands.

These copies have the prefix old. Then makenews copies our new procedures onto the original

names. Each of these new procedures (cforward, cright, etc.) uses an original turtle command,

now renamed with the old prefix, along with nearly to create a fuzzy version.

The next step is to erase the procedures makeolds, makenews and setup. Then cfd, cbk, crt and

clt are erased. They're no longer needed since their definitions have been copied onto the original

primitive names.

Then the name startup is erased in the last line of setup. Even though it is erased, the list it

named continues to run until completed. The primitive command buryall buries the procedures

that have not been erased, oldfd, oldbk, oldrt, oldlt, and nearly. This means that these

procedures will not respond to the commands edit, po, pots, pops, poall, save, or erase.

Although this hides our dirty work to some degree, knowledgeable Logo people have strategies

for finding out what we did.

After poall turns up a blank, some people try unburyall and then look again. Even though part of

the contents of the file has been erased, enough is left, especially nearly to figure out what's

12

going on.

Pofile "startup will display the full contents of the file as it was created, just as listed above.

(We could have prevented this by including the command erasefile "startup in the startup list.)

People who are not familiar with burying or using pofile may still stumble upon our procedures.

This has often happened when someone stops a procedure during execution. Logo will tell you

what procedure you are in when you press the stop character. This may be nearly or oldfd. With

these names revealed, the procedures may be printed out and edited.

One may restore Logo to normalcy by using copydef to restore the old definitions to their

original names. For example:

copydef "oldfd "forward

fixes forward.

5. Summary

We started with a broken turtle which did not seem to have much to do with anything outside of

itself. As we played with it and gave it to others to play with, we found that we had created a

microworld for exploring geometry, trigonometry, probability, statistics, feedback and things like

that.

According to Bob Lawler, microworlds are built out of "neat phenomena" and "powerful ideas."

We took a neat phenomenon as our starting point. It spun off a number of powerful ideas, some

intended, others surprising.

