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A popular metaphor in recent years compares the process of writing a computer program to that 

of designing and building a bridge. The point of the metaphor is that it's not acceptable to debug 

a new bridge design by building the bridge, opening it to traffic, and waiting to see whether or 

not it collapses. People who use this metaphor argue that the analogous technique isn't acceptable 

in computer programming either. The phrase software engineering was coined to evoke the 

comparison with civil engineering and other, similar disciplines. The view of programming as 

software engineering has had a profound influence on computer science education. The purpose 

of this paper is to examine that influence, particularly at the high school level through the 

College Board Advanced Placement curriculum, and suggest an alternative view. 

(I am focusing attention on the A.P. curriculum to make the point concrete, but it is just one of 

many similar influences. The College Board did not invent the software engineering view; it tries 

to follow the lead of its client colleges. At the college level, the ACM curriculum standard could 

be cited instead. I teach at both levels, but I feel most strongly about the inappropriateness of the 

software engineering approach in secondary education.) 

Software Engineering: Programming as Discipline 

What are the characteristics of the software engineering approach? One fundamental assumption 

is that the goal of a project is given in advance. It is not the civil engineer's job to decide where a 

bridge should be built, or whether a bridge should be built in the first place. Those decisions are 

made by someone else---politicians, traffic flow experts, perhaps railroad owners. The engineer 

is employed to carry out a predefined project, and is given a formal specification of the 

requirements. 
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A natural consequence of externally-provided goals is a top-down design technique. Ideally, 

beginning with the formal goal specification, the engineer maps out large subtasks, then develops 

each subtask into more and more detailed structure by a process called "stepwise refinement,'' 

one of the central elements of the structured programming methodology. Mastery of this 

technique is the main content, apart from programming language syntax, of most introductory 

computer science courses. 

If a bridge falls down, its designer can be sued for damages. A similar standard of professional 

liability should apply to the authors of computer programs, if lives or property are endangered by 

their failure. Some professional societies have begun to propose uniform standards for licensing 

of software engineers. If programmers are held liable for their failures, it pays to use 

conservative techniques in the design of new programs. Just as civil engineers rely on a few 

well-understood designs for bridges, programmers should use proven algorithms to ensure 

program correctness. Mistakes should not be debugged by trial and error, but should be 

prevented in advance by redundant error checking, strict adherence to design standards, and 

formal proofs of correctness, techniques that one popular text calls antibugging [Cooper and 

Clancy, 1985]. 

One person can't build a bridge alone. Bridges are built by large teams, and it's important that 

each team member have a well-defined job. Similarly, software engineering emphasizes the 

needs of programming teams in which each programmer is assigned a subtask. The top-down 

design approach is particularly important in a team environment so that each program segment 

has a well-defined interface to the rest of the project. Rigid standards are required about things 

like scope of variables and documentation of subprocedures. 

Finally, an emphasis on product has been implicit throughout this description. What is most 

important is the program, rather than the style of work of the programmers. A software engineer 

derives job satisfaction from seeing people use the product, more than from the programming 

itself. 

(In a recently-published polemic, Edsger Dijkstra, one of the founders of the structured 

programming methodology, dissociates himself from the name "software engineering" because 

he thinks that it evokes a methodology based on testing, rather than on the formal mathematical 

reasoning that he prefers [Dijkstra, 1989]. Still, from the point of view I am presenting, Dijkstra 

and the software engineers are in the same camp because they both focus on producing a 

program that meets a prior specification, rather than on the development of that specification.) 

Artificial Intelligence: Programming as Art 

Some computer programs actually do control processes in which a malfunction could threaten 

human life. In those cases, I agree that programmers should regard their work as closely 

analogous to other engineering disciplines, with the same professional standards and the same 

conservative techniques. Much programming, though, does not have this character. If a video 

game, for example, malfunctions, no lives are lost. Reliability is still desirable, of course, but 

other characteristics, such as creativity in the design of the game, are equally important. Unlike 

bridge-building, much computer programming is done by hobbyists for their own personal 
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satisfaction, and professional liability does not apply in this case. 

Among professional programmers, research work is in some ways more like hobbyist 

programming than like civil engineering. Reliability may be less important than the flexibility to 

explore new techniques. (Of course, reliability is itself the topic of some computer science 

research, but even then the research cannot proceed by invoking already-known methods.) In 

particular, artificial intelligence research is characterized by the desire to extend the limits of 

what can be done with a computer; the researcher typically does not have a body of well-

understood, reliable methods to follow. It is not surprising, then, that AI researchers have 

developed programming tools and approaches quite different from those of software engineering. 

In a research project, the goal of a project evolves in the work. That is, the programmer starts 

with a broad idea, but often cannot specify the detailed behavior of the program until it's written. 

She starts with a partial understanding, attempts to program some better-understood corner of the 

project, and then interacts with the resulting program to see in what direction to proceed. The 

goals are chosen by the same person doing the programming. 

If the goal is not precisely known in advance, a strict top-down design process is impossible. 

Researchers use interactive design techniques, which may include some top-down components 

but also may include a bottom-up approach in which the work already done provides a software 

toolkit that itself suggests new higher-level modules. Instead of a single programming 

methodology like stepwise refinement, the researcher uses eclectic techniques. 

Since the result of a research project is rarely destined to be used directly in real applications, 

there is no danger and no liability. Instead of following conservative, well-understood patterns, 

the researcher is encouraged to take risks and invent new methods. Program debugging can be 

interactive; other members of the research community are often encouraged to try out the 

program, not only discovering coding bugs but also contributing to the incremental design 

process by suggesting improvements. 

Research programs are rarely written by large teams. One reason is that you can't get a Ph.D. for 

writing one percent of a program; another is that it's hard to coordinate large teams without a 

precise, formal design document. But the most important reason is that large teams are rarely 

creative. Instead, individual creation is required to solve new problems. 

To summarize, there must be an emphasis on process in the research programming environment. 

The resulting program may be demonstrated once and never used again, since it will probably be 

slow and clumsy, but by writing it, the researcher learns new ideas that can be refined and 

applied later. In education, too, the actual programs written by students are unimportant; the 

student, not the program, is the "product'' of the teaching and learning activities. We should not 

be surprised if process-centered approaches to programming turn out to be most helpful in 

education. 

Even when a program is developed for practical use, the development process may include steps 

that are more like research than like building bridges. Consider spreadsheet programs. The 
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history of their development, starting from VisiCalc and continuing to current products like 

Lotus 1-2-3, has been a classic software engineering effort, with large development teams and 

precise goals. But the first step, starting from nothing and getting to VisiCalc, took two people, 

one of whom had the idea, "here is a new thing we can do with a computer,'' and the other of 

whom was a virtuoso computer hacker, trained in the MIT research environment. 

(By the way, I do not mean to suggest that there is no research among civil engineers! No doubt 

new bridge designs grow out of a development methodology much like the one I'm describing 

for programming research. The contrast I am making is not between programming and civil 

engineering, but between research of any kind and the one-sided caricature of civil engineering 

that provides the metaphor for the software engineering school.) 

The metaphor of bridge-building powerfully captures the spirit of the software engineering view 

of programming. As an equally powerful metaphor for this alternative view, I suggest 

considering programming as an art form, and the programmer as an artist. 

How to Train an Artist 

I am discussing the nature of computer programming to make a point about the nature of 

computer programming education. There are two very different kinds of programming activity, 

bridge-building and art. I suggest that our standard computer science curriculum does a good job 

of preparing students for the first kind, but not for the second. If we want to develop computer 

programming artists, we should explore the training of other kinds of artists. 

(Both of these approaches are extremes. Some readers may feel more comfortable with an 

intermediate position, representable in metaphor by professions such as medicine and 

architecture that combine the need for individual creativity with careful attention to conservative 

techniques. Still, I am trying to call attention to an imbalance in our current educational practice, 

and in this context I think it is valuable to show what the opposite extreme would be like. I hope 

that even this extreme will not seem impractical, even if we ultimately settle on a compromise 

view.) 

The training of artists is not the exact opposite of the training of engineers; art schools do not 

merely throw the student into a room full of materials and say, "go to it!'' There is a discipline to 

art also, including a collection of well-understood, conservative techniques. 

I suggest that the training of an artist can be divided into three categories of learning. There is 

technical knowledge, such as the differences between oil paints and water colors, or the rules of 

perspective. There is technical skill, such as the ability to draw a straight line freehand without 

wiggling, or the ability to stretch a canvas evenly before painting on it. And there is inspiration, 

seeing the world with an artist's eye and finding something worth painting at all. 

All three of these are essential to a great artist, but inspiration comes first! I am not an artist, and 

my personal experience of art instruction has been limited to a couple of introductory courses 

when I was in high school. In those courses, though, the teachers made a big fuss about staying 
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away from technique. "Never mind what it looks like'' was a frequent comment. One beginning 

exercise was to draw a chair with our eyes closed; the point was to overcome our anxiety about 

photographic exactness and get us to enjoy moving a pencil over paper in broad strokes. The 

teachers promised that technical instruction, for those of us who did develop a deeper interest in 

art, would come later. 

Art instruction that began with endless practice at drawing straight lines and perspective cubes 

would chase away any true potential artists. At best it would produce "commercial artists,'' a 

classic oxymoron. This is the risk we run in computer science education. (Commercial artists are 

socially useful, and so are the members of software engineering teams. But there could be no 

commercial art without true creative artists to invent the language and the tools of art.) 

The Programming Language Paradox 

Software engineers believe in constructing a program top-down. That is, they start with the broad 

ideas of the program, and fill in the details later. You would think their design tools would 

support programming in terms of broad ideas. Yet the programming languages of software 

engineering, of which Pascal is the prototype, focus attention on low-level details. They use 

explicit storage allocation, so the programmer must think about the size, location, and extent in 

time of each data aggregate. They use strong typing, encouraging the programmer to concentrate 

on the precise encoding of symbolic information rather than on the meaning. They provide half a 

dozen specific, hardwired control structures, emphasizing the sequence of events in a 

computation rather than the input-output behavior of functions. Complex data structures are 

manipulated with explicit pointers, a common source of confusion and bugs. 

Some of these low-level properties of software engineering languages are the result of their early 

history as merely an abbreviation for machine language instructions. But, for example, the 

transition from C (a hacker's language) to C++ (a software engineer's language) has brought 

more attention, not less, to these low-level details. The improvement is that in C++ the details 

can be represented more rigorously, with less need to rely on ad hoc escape hatches such as type 

casting. 

Software engineers recognize the inadequacy of their programming languages as design tools. 

That is why they develop their programs using "pseudocode,'' essentially English with 

indentation to indicate block structure. English is a good high-level design language precisely 

because it does not require the programmer to think about memory allocation, variable types, and 

so on. The difficulty is that if one really designs in English, it's possible to write an instruction 

that has no obvious translation (or even no translation at all) into any programming language. To 

end up with useful pseudocode, the programmer must actually cheat, writing the program 

mentally in something like Pascal and then translating into English and leaving out most of the 

details. 

There are programming languages that don't require such extreme attention to low-level details 

as the ones software engineers love. These symbolic programming languages can readily express 

overall design as well as details. Why don't the software engineers choose higher-level 

languages? The reason is that they overemphasize their concern with reliability, and in particular 
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with possible low-level bugs. For example, although a language with explicit variable typing 

forces the programmer to be concerned with low-level details, it also may help catch bugs in 

which an incorrect value is assigned to a variable. 

The educational cost of the software engineering languages is that much of the time and effort in 

introductory courses goes into syntactic details, and into such low-level semantic issues as binary 

representation, word length, ASCII codes, and pointer arithmetic. By contrast, an introductory 

computer science course that uses Lisp [Abelson and Sussman, 1985], coming from the artificial 

intelligence research tradition, can focus attention on such high-level semantic issues as 

functional programming, object-oriented programming, and logic programming methodologies, 

data abstraction, and higher levels of abstraction such as the design and implementation of a 

programming language. There is no pseudocode in this text; a Lisp procedure written in terms of 

subprocedures that may not yet be defined provides the right level of abstraction, while retaining 

technical rigor. 

The title of this paper is "Symbolic Programming vs. the A.P. Curriculum.'' It could equally well 

have been "High-Level Semantics vs. the A.P. Curriculum'' or "Programming as Art vs. the A.P. 

Curriculum.'' For my purposes, what's important about symbolic programming is that it allows us 

to step back from technical details, in a way somewhat analogous to blindfold drawing exercises. 

There are technical ideas in the curriculum, but they are high-level ideas, and they don't deaden 

the hacker spirit (that is, the artistic spirit). In fact, as an introductory college-level course, I think 

the Abelson and Sussman text works better than the traditional curriculum even from a bridge-

building perspective, because even software engineers should start with the big ideas. Data 

abstraction, for example, is part of the structured programming approach as well as the artificial 

intelligence approach to program development. 

I want to address a possible misunderstanding of the point I'm making. The choice of 

programming language is not the central issue in designing an educational process. It would be 

possible to teach a software engineering curriculum in any language, including Lisp. (Indeed, 

these curricula generally make a point of not specifying a language, and the authors of the 

curricula respond to accusations of language chauvinism by pointing that out.) Such a curriculum 

would be just as bad as the same course taught in Pascal. Rather, my point is that an examination 

of the programming languages that the adherents of each approach actually do choose sheds light 

on how these approaches work out in educational practice. The principle of top-down design 

sounds great when expressed in the abstract, but the real teaching done in its name too easily gets 

bogged down in low-level technical details. 

What High School Students Need 

In the United States at present, high school computer science education is strongly affected by 

the accidental fact that there is no official secondary curriculum, but there is an official college-

level curriculum for secondary schools in the form of the College Board Advanced Placement 

exam. The result is that most high school students who are interested in programming are now 

taught from a model that was designed (and badly designed, as I have argued above, at that) for a 

college population. The problem is not the College Board's fault; a lack of creative leadership at 

the secondary level has allowed what should be an advanced curriculum for a minority of 
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students to set the tone for all programming instruction. 

At the college level, where we are engaged in the training of professional programmers, the 

software engineering approach is sensible, even if not the whole story. I have not suggested 

abandoning concerns about professional liability, conservative design, and teamwork in the 

context of programming projects in which lives or property are at risk. Rather, I have argued that 

software engineering concerns should be balanced by a lively sense of the artistic, creative side 

of professional programming, and that large ideas should come before technical details in the 

curriculum. 

At the high school level, I want to argue for a more extreme view. High school students are not 

about to enter the job market as professional programmers. Rather, they are exploring a possible 

interest in programming, and preparing for further instruction at the college level. They can learn 

discipline later. Now they need a kind of apprenticeship: real tasks to work on, the freedom to 

experiment and to risk failure, but in an environment that models respect for commitment. They 

need teachers who serve as experts available for consultation, rather than lecture on technical 

knowledge or set exercises of technical skills. 

(I am concerned here with the needs of those students who are interested in computer 

programming. The design of a "computer literacy'' curriculum for all students is a separate issue. 

I have argued elsewhere that it is really a non-issue; students should be quite comfortable with 

word processors and other utility programs long before they leave elementary school. The widely 

perceived need for a secondary school "literacy'' curriculum is a temporary result of the fact that 

computers have only recently entered the schools in significant numbers.) 

Not every teenager wants to program computers, but many do. Computers are powerful, 

responsive tools. Apart from reading, few intellectual skills appeal so strongly to young people, 

especially not formal, technical ones. We educators are lucky that computer programming ranks 

almost as high as skateboarding and playing the guitar! We should teach programming in a way 

that nurtures this excitement, not turning it into one more academic subject full of facts to be 

paraded on exams. Instead, high school programming instruction should be project-based, with 

projects chosen by the students themselves as much as possible. The A.P. curriculum is 

particularly bad, because of its emphasis on conservative technique and correspondingly low-

level details, but any fixed curriculum would interfere. 

Of course the student's apprenticeship can't begin without an initial period devoted to learning 

the rules of a programming language. But I think we should look upon this early work as an 

unfortunate necessity, rather than as the focus of our curriculum, and we should try to get it over 

with smoothly and quickly. (In practice the division into stages is not so clear-cut. Students can 

be working on independent projects in parallel with formal instruction in the language. Still, the 

two are very different in style, and will probably be experienced by students as separate 

activities.) To this end, we should choose a high-level language such as Lisp to minimize the 

time spent on syntax and machine representation issues. (Abelson and Sussman use the Scheme 

dialect of Lisp in their text; for high school students I prefer the Logo dialect, which provides 

many of the same high-level mechanisms along with a user interface that is less intimidating to a 

beginner.) I also like to minimize formal lectures, relying instead on a self-paced format and 
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scheduling advanced students into the lab at the same time as the beginners to allow for informal 

one-on-one tutoring. 

In this early stage, I have come to think that debugging (and antibugging) should not be a large 

part of the student's experience. It's true that debugging is excellent mental exercise, but real 

beginners tend to make uninteresting mistakes. Spending 15 minutes struggling with an 

unnoticed punctuation error just teaches frustration, and so I will often debug a beginner's 

program myself and encourage the student to get on with the big idea that the bug interrupted. 

Only if the bug seems to indicate a serious conceptual misunderstanding do I make any fuss 

about it. 

The second stage of the student's apprenticeship focuses on projects. This effort should be 

supported structurally with a curriculum-free lab course that can be repeated for credit; interested 

students may enroll in the lab throughout half a dozen semesters. (One problem with the "back to 

basics'' movement is that it has encouraged a uniform set of courses for all students. One 

semester of programming is more than many students need, but not nearly enough for many 

others.) If the school will allow the course to be taught without assigning grades, so much the 

better. The teacher's role at the beginning of the semester is to ensure that each student takes on a 

project that is challenging but not overwhelming; later, the teacher serves as a consultant, 

looking over shoulders when that feels appropriate. It is also appropriate to make concrete 

suggestions about programming style, pointing out how a particular student program could be 

organized more clearly, but I think teachers should not insist on universal adherence to broad a 

priori rules. 

For most high school students, this second stage can last through the senior year. If the 

programming projects are selected well, each student will learn certain universally important 

ideas (such as recursion), and also each student will learn many other ideas that happen to be 

relevant to his or her projects but are different from another student's learning. This project 

laboratory will be excellent preparation for a more rigorously structured computer science 

curriculum in college. Some students, however, will eventually get tired of projects and will ask 

for more formal instruction about meatier ideas. For them, a third-stage course can introduce 

computer science topics such as automata theory or compiler construction; alternatively, a true 

Advanced Placement course can be offered using the Abelson and Sussman text. 

I have written a series of three texts, using Logo, to support these three stages [Harvey, 1985, 

1986, 1987]. The first (introducing the language) and the third (computer science topics) are 

meant to be read sequentially, like most texts. The second is a collection of projects, in no 

particular order, intended to serve as an inspiration and to provide starting points for student 

projects rather than to be read from cover to cover. A series like this has the advantage of a 

uniform style and the ability to rely on earlier learning in the later volumes, but alternatives are 

available for each of the three stages. In particular, there are many collections of programming 

projects available, and the computer lab should have a wide assortment. In the third stage, even a 

Pascal-based text covering the official Advanced Placement curriculum wouldn't be too harmful; 

my concern is that that curriculum has become, by default, the only programming experience for 

many high school students. 
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Conclusion 

To summarize, I am presenting for computer science an argument that has come up before in 

many other areas of science and mathematics education. Our official curricula, I think, run the 

same risk as the official physics curriculum that caused Albert Einstein to drop out of school. 

Such rigidity would be particularly regrettable in a subject like computer programming, which 

lends itself so readily to a flexible, experimental approach.  

 


