
Journal
of the ISTE

A Educators
! L 0 G 0 Speclal1~:~::~~~~~

it ti EXCHANGE
Spring 1992 Volume 10 Number 3

I ···• s issue:
Around the HOUSE

5 3 17 18

Escher & Potato Stamps
Multiple Turtles

Psst.
Here comes

the teacher! Also-Dots & 7j ;r~'':t!l

f) 8888888888 Logo Meets Hype ... - ''A''- ·'•

Logo in
Sanity & the Single Com ,? ,

International Society for Technology in Education

! LOGO ,, !
I 1 t I EXCHANGE

Journal of the ISTE Special Interest Group for Logo-Using Educators

Founding Editor ISTE BOARD OF DIRECTORS 1991-92
Tom Lough

Editor-In-Chief
Sharon Yoder

Associate Editor
Judy Kull

Assistant Editor
Ron Renchler

International Editor
Dennis Harper

Contributing Editors
Eadie Adamson
Gina Bull
Glen Bull
Doug Clements
Sandy Dawson
Dorothy Fitch
Judi Harris
Mark Horney

SIGLogo Board of Directors
Lora Friedman, President
Bev and Lee Cunningham,

Secretary (Treasurer

Publisher
International Society for
Technology in Education
Dave Moursund, Executive Director
C. Dianne Martin,

Associate Executive Director
Anita Best, Managing Editor
Talbot Bielefeldt,

Associate Editor
Lynda Ferguson,

Director of Advertising Services
Ian Byington, Production Assistance

Executive Board Members

Bonnie Marks, President
Alameda County Office of Education (CA)
Sally Sloan, President-Elect
Winona State University (MN)
Gary Bitter, Past-President
Arizona State University
Barry Pitsch, Secretary/Treasurer
Heartland Area Education Agency (lA)
Don Knezek
Education Service Center, Region 20 (TX)
Jenelle Leonard
Computer Literacy Training Laboratory (DC)

Board Members

Ruthie Blankenbaker
Park Tudor School (IN)
Cyndy Everest-Bouch
Christa McAuliffe Educator (HI)
Sheila Cory
Chapel Hill-Carrboro City Schools (NC)
Susan Friel
University of North Carolina (NC)
Margaret Kelly
California State University-San Marcos
California Technology Project (CA)
Marco Murray-Lasso
Sociedad Mexicana de Computacion en la
Educacion (Mexko)
Paul O'Driscoll
Lane Education Service District (OR)
David Walker
Apple Computer Europe (France)

1 LOGO

httEXCHANGE
Volume 10 Number 3 Journal of the ISTE Special Interest Group for Logo-Using Educators Spring 1992

Contents

From the Editor-It's Beyond Me!

Quarterly Quantum-HOUSE Revisited

Beginner's Comer-Introducing ... Multiple Turtles

1991 ICPSC Logo Winners

Sharon Yoder 2

Tom Lough 4

Dorothy Fitch 6

Doruzld T. Piele 10

ICPSC: Brian Harvey Responds 11

Logo LinX-Logoed Mottos Judi Harris 15

Logo Foundation Announced 20

Logo Ideas-Dots!!! Eadie Adamson 21

Sanity and the Single Computer (Part 2)

Windows on Logo-Hypermedia Links With Logo

Math Worlds-... a conversation with Uri Leron

judi Menken 25

Glen L. Bull and Giruz L. Bull 28

A.]. (Sandy) Dawson 33

Extra for Experts-Escher's Potato Stamps: A Microworld Programming Project

Y. S. Give' on, Nitsa Movshovitz-Hadar, Riruz Hadass 37

Search and Research-Higher-Level Math Thinking: Part II Douglas H. Clements 42

Dennis Harper 45 Global Logo Comments-Reports from Australia, Asia, and Senegal

Advertising space in Logo Exchange is limited. Please contact
the Advertising Coordinator for space availability and details.

Logo Exchange (lSSN 0888-6970) is published four times a
year by the International Society for Technology in Education
(ISTE), 1787 Agate Street, Eugene, OR 97403-1923, USA;
503/346-4414. Subscription rates: Membership dues for
SIGI...ogo are $20.00.$10 of this amount is for the subscription
lo Logo Exchange for one year. This publication was produced
using Aldus PageMalcer®.

POSTMASTER: Send address changes to Logo Exchange,
ISTE, 1787 Agate SL, Eugene, OR 97403-1923. Second·dass
postage paid at Eugene OR. USPS #00()..554.

ISTE is a nonprofit organization with its main offices housed at
the University of Oregon.

ISTE Order Desk: 800,1336-5191
InterNet: ISTE@OREGON.UOREGON.EDU

lndividuaiiSTE Membership: $46.00
Dues support the development, coordination, and delivery of ISTE services, including
8 issues of the ISTE Update newsletter, either 8 issues of The Computing Teacher, 4
issues of Educational/RM Quarterly, or 4 issues of the Journal of Research on
CompuJing in Education, full voting privileges, and a 10% discount on ISTE books
and courseware. Add $10 for mailing outside the USA.

Individual ISTE Members may join SIG Logo for $20.00.
Dues include a subscription to Logo Exchange. Add $10 for mailing outside the USA.

Send membership dues to ISTE. Add $2.50 for processing if payment does not
accompany your dues. VISA, Mastercard, and Discover accepted.

LX solicits articles on all topics of inlereStto Logo-using educators. Contact!STE for submissioo
guidelines. Opinions expressed in lhia publicalioo an: those of lhe authors and do not necessarily
n:prcscnt or reflect the official policy of ISTE.
e All arlicles arc copyright of ISTE unlc:sa othcrwYc specified. Reprint permission for nonprofit
educational usc can be obtained for a nominal charge through the Copyright Clearance Center, 27
Congress St., Salem, MA 01970; 508(744.3350; FAX 508{741·2318. ISTE members may apply
directly to the ISTE office for free reprint permission.

r

2

Have you ever found yourself completely mysti
fied by some Logo programming problem? Perhaps
you asked a colleague or the local 11expert" for assis
tance. Has your expert ever casually created a sophis
ticated solution to your problem that you never would
have thought of? If you are like me, then your first
question is always ~~How did you ever think of that?"
Perhaps your expert replied, "Oh, I learned that in a
Pascal class" or ''That's a common programmingprob
lem-I learned how to do that in a data structures
class."

Indeed, many, if not most, people using Logo
have had little or no computer science training. Logo
is most often taught in educational environments,
while languages like Pascal tend to be taught in com
puter science environments. Logo classes focus on
pedagogical issues, on educational philosophy, and
on learning styles. On the other hand, Pascal classes
focus on such issues as programming style, data struc
tures, and algorithm analysis. The result is that even a
teacher well trained in the use of Logo in the classroom
is ill prepared to deal with complex programming
and/or computer science issues.

Generalists and Specialists
I have seen a parallel phenomenon in my other

teaching areas. For example, I recall teaching key
boarding to seventh graders in the early days of using
computers in the classroom. One student disagreed
with my rules for placing fingers on the home row of
keys. I assumed the student simply misremembered
the instructions his elementary school teacher had
given him. Not so-several students who had been in
the same class agreed with his criticism. As the day
passed, I encountered a number of students, all from
the same elementary class, with the same misinforma
tion. At first I was very annoyed that this teacher had
taught her students incorrectly, but the more I thought
about the problem, the more I realized I had little
reason to be upset. Keyboards were very new in the
elementary classroom. We had not provided inservice
on keyboarding to all of our teachers, and yet we were
expecting them to teach it. There was certainly no
prerequisite of expertise in teaching typing for getting
an elementary teaching certificate in my state. And,
after all, it actually seems very reasonable to shift your
right hand one key to the left since, in the correct
position, your right little finger is almost always over
some punctuation mark.

ttltt LoGoExcHANGE

It's Beyond Me!
by Sharon Yoder

Another striking example occurred when I was
teaching my advanced seventh grade math students
why division by zero is not allowed and what it meant
to say that the result of such a division would approach
infinity. A number of the students provided "alternate"
explanations that had come from their elementary teach
ers. As a mathematician by training, I was quite an
noyed. Again, however, some reflection made me real
ize that I came to understand division by zero well into
my mathematics major in college. Why should I expect
elementary teachers to have that same knowledge?

Problem Solving With Technology
Last fall I taught a class in computer applications.

Stu dents in this class chose a rna jor piece of a pplica tio ns
software they wanted to learn, e.g., Microsoft Word,
Claris Works, PageMaker, and so forth. During class time,
we shared successes, failures, and problems. We spent
a lot of time thinking about solving problems in a
technology environment. Often my role was to provide
technical explanations, such as where and how fonts
are stored, what kinds of graphics formats are avail
able, what problems are involved in writing fast sorting
algorithms, how a network handles transfer of data,
and so forth. In other words, I often brought to the class
my computer science knowledge upon which they
could then build their conceptual models.

As computers become increasingly easy to use and
increasingly prevalent in schools, we will encounter
more and more minimally trained users who have no
training in computer science. While teachers will in
creasingly encounter problems with technology, there
is little reason that we should expect them to be knowl
edgeable about computer science concepts when there
is so much else they need to know. Classroom teachers
often have outside experts on whom they can rely for
answers to technical questions in other fields, such as
art, music, or math. Clearly we also need to have
experts who understand computer sdence, hardware,
and software at a level that they can assist teachers in
problem solving.

The Teacher Training Problem .•• Again
However, herein lies the problem. Increasingly as

we train technology education leaders, we are moving
away from the teaching of any computer science. Ten
years ago, educators wanting to work in the area of
technology took courses in computer science depart
ments. But that h~s become increasingly difficult. Most

Spring 1992

···''·"-~~"""'· ~--______________ ..

computer science departments have a rather high level
of prerequisites for many of these courses, often calcu
lus and/or discrete mathematics. At the same time,
colleges of education are moving away from teaching
or requiring much programming for masters or doc
toral level students who want to become leaders in the
field of technology in education. The result is an ever
increasing number of technology education "experts"
who do not have enough foundation in the computer
science field.

While we might not expect the classroom teacher
to be an expert in touch typing, we certainly expect the
typing teacher to know correct hand placement, and
much more. While we might not expect the elemen
tary classroom teacher to know the reasons why divi
sion by zero is not possible, we certainly would expect
the math coordinator or high school upper level math
teacher to be able to explain the reasons to novices.
Why, then, do we feel it is acceptable for computer
specialists in schools to have little or no knowledge of
computer science?

This is certainly not a problem with an easy solu
tion, and I'm certainly not going to solve it by writing
one editorial.

However, I can make several suggestions for the
Logo programmers among you. First, find someone
knowledgeable about computer science who is willing
to answer questions. You might find a computer sci
ence teacher or someone at a local college or university.
Then when you have a Logo problem-or other com
puter problem-ask that person for help and ask for an
explanation. Gradually you will learn enough to solve
more of the problems for yourself.

Second, do some sophisticated Logo reading. Take
a lookatthe MIT Press Logo series. You probably want
to start with Brian Harvey's Computer Science Logo
Style, Volume 1. This is not an easy book. After a
number of years of working with it, I still pick up
tidbits. Brian's book, and some of the others in the
series, give you real insights into Logo from a com
puter science point of view.

Even Your Editor Encounters Problems!
And where do I go to seek help? Well, if the prob

lem appears to be with the version of Logo I am work
ing with, I contact the company that makes the version
of Logo: Terrapin, LCSI, and Paradigm all know who I
am! If it's a programming/ computer science problem,
I first check some of my books-often the Computer
Science Logo Style series-or I send electronic mail to
Brian Harvey.

Oh . . . but now I must run. My electronic mail
program just beeped-maybe it's the answer to my
latest question from Brian!

Volume 10 Number 3

Note: The MIT Logo series of books is now avail
able through ISTE. Call or write for a price list.

Sharon Yoder
SIGLogo

1787 Agate Street
Eugene, OR 97405

BI1NET: Yoder®Oregon
InterNet: Yoder@Oregon.uoregon.edu

Ph: 503-346-2190

LOGOEXCHANGE 3

~
c:
§

Welcome to the QQ. For new readers, this
column(whichmayneverbesufficientlybrief!)
offers a quantum (a fixed quantity or amount)
of information, news, commentary, or what
have-you each quarter.

() Every so often, I return to my hometown of Elkton,
~Virginia, nestled in the beautiful Shenandoah Valley. It
i:: is small as towns go; only about 1,600 people live there.
J2 One of my favorite activities in Elkton is to visit the
~ houses in which my family lived while I was growing § up. After spending their first couple years of married

,..,. life in a small apartment, my parents rented a charming
V little bungalow next to what was then the local fair

grounds. What an exciting location for a young lad!

4

After I completed the third grade, we moved to a
farmhouse out in the country. This was a difficult
change at first, but I soon grew to love farm life, and
spentmanyhappyhoursonthebanksoftheShenandoah
River. Just before I started ninth grade, we moved back
to town into a rental house for one year, before my
parents finally were able to purchase our first house a
couple of blocks away.

As I drive past these houses, memories wash over
me. Such a sentimental journey satisfies some deep
need forrevisitation, for taking one more look at some
thing associated with a previous personal experience. I
would expect that many readers have felt similar
stirrings.

There is another house I revisit from time to time.
It is simply called HOUSE, or sometimes TO HOUSE.
Yes, it is the familiar TRIANGLE and SQUARE combi
nation of Mindstorms fame. Every year or so, I succumb
to an urge to play HOUSE once again. I delight in the
memory of the decade-old "awakening" this particular
procedure provided me.

My most recent HOUSE call was unexpected.! was
reading through a book on fractals when I spotted an
illustration that inspired a project based on HOUSE.
The idea was to draw a HOUSE and use the two top roof
lines of the TRIANGLE procedure as bases for two
additional HOUSEs of the same size. This gave me a Y
shaped figure. Then came the hard part-how to repeat
that pattern indefinitely.

tt!tt LOGOEXCIIANGE

HOUSE Revisited
by Tom Lough

Later, I got the crazy idea that the pattern would be
more interesting if the two top roof lines of the TRI
ANGLE were shorter than the base. This would pro
duce two smaller HOUSEs on top of the first HOUSE.
I took the easy way out by changing TRIANGLE to
draw a right triangle with the 90-degree angle at the top
and two 45-degree angles at the bottom. This produced
a surprisingly familiar pattern when repeated-a bi
nary tree:

Finally, I got the totally crazy idea of changing
TRIANGLE so I could draw the pattern with any angle
at the base. After a bit of work (understatement), I
figured it out. I felt good. I learned a lot.

Dear readers, I am not telling you this tale to
suggest that you also try to figure out this pattern. But
I am suggesting that there are many reasons to return to
the HOUSE procedure from time to time. You just
might be surprised at what you discover about the old
home place. I'd love to hear about your journeys.

FDlOO!

PS: I would be happy to mail a copy of a procedure
listing for this column to any reader who sends me a
stamped self-addressed envelope.

Tom Lough
Founding Editor

POBox 394
Simsbury, CT 06070

Spring 1992

"'•'" ·-·'>··-------------..

The turtle moves ahead.

Introduction to Programming in Logo Using Logo Writer

Introduction to Programming in Logo Using Logo PLUS

Training for the race is easier with ISTE's Logo books by Sharon (Burrowes)
Yoder. Both are designed for teacher training, introductory computer science
classes at the secondary level, and helping you and your students increase your
skills with Logo.

You are provided with carefully sequenced, success-oriented activities for learn
ing either Logo Writer or Logo PLUS. New Logo primitives are detailed in each
section and open-ended activities for practice conclude each chapter. Both books
sell for $18.95 each plus $4.50 shipping.

• International Society for Thchnology In Education
~ 1787 Agate Street, Eugene, OR 97403-1923

~ f Order Desk: 800/3~5191 Fax: 503/346-5890
OOi'lNP'

Keep your turtles in racing condition.

Psst.
Here comes
the teacher!

i What Are Multiple Turtles All About?
Your Logo turtle is probably a dose friend by now. E It listens when you talk to it. You enjoy spending time

0
0 together. Perhaps it would even be jealous if it thought

it had to share you with some of its friends-the other
U) turtles that may be lurking somewhere in your Ian

"' guage. In this column we'll meet these multiple turtles
~ and learn to make friends with them, too!
1:: Different versions of Logo offer different numbers
C:: of turtles. Early versions of Logo have a single turtle,
"6, Logo Writer has four turtles, and Terrapin Logo for the
Q) Macintosh has an unlimited number of turtles. Al
£0 though Logo PLUS has just one turtle, it does have a

STAMP command, which allows you to simulate mul
tiple turtles. (We'll have to investigate that idea another
time.)

6

People usually begin learning Logo by using just
one turtle. That's fine. There is enough to think about
with a single turtle. You need to become familiar with
how to move and turn it, how its pen works, and how
to get it to go where you want! But once you are in
control, why not see what you can do with multiple
turtles?

Multiple turtles are totally independent of each
other. Each one has its own position and heading, it can
wear its own unique turtle shape, its pen can be up or
down, and it can be hidden or showing. It can even have
its own pen color, pen pattern, or pen size, depending
on the commands that are available.

There are actually only a few multiple turtle com
mands to learn: TELL, ASK, WHO, EACH, and
TURTLES. (If your version doesn't have a TURTLES or
ALL command, don't worry-you can write one that
does the same job. See the Notes section later in this
column.)

A Lesson in Multiple Turtles

Many people, particularly young learners, first
learn how the turtle moves and turns by experiencing
it firsthand-by playing turtle. This lesson shows how
you can introduce multiple turtles by playing "Mul
tiple Turtle." Those who may feel self-conscious play
ing "turtle" may not feel quite as silly playing "multiple
turtles." This experience will help them understand the
value of playing turtle for people of all ages, no matter
how many turtles are involved.

t+itt LoGoExcHANGE

Introducing ...
Multiple Turtles

by Dorothy Fitch

You can use the following dialogue with any group
of students or adults who are ready to learn about
multiple turtles. Each individual in the room plays the
role of a turtle. Even if you have more people than your
language has turtles, this is still a good way to show
both visually and dramatically how the commands
work. There's nothing like putting yourself in the posi
tion of the turtle, and it is especially effective when
learning about multiple turtles, where things seem to
become a little more complex. After going through
these activities, you'll probably find that your audience
can go to the computer and begin to use the new
commands right away.

Preparation
Materials you will need:
• some blank index cards
• a marker to write on the cards
• an overhead projector
• some overhead transparencies
• a marker to write on the transparencies.

1. Count out as many blank index cards as you
have people in the room (not including you).

2. Number the cards sequentially beginning with
0.

3. Give each person in the room a numbered card.

The Dialogue
You speak the lines marked YOU to the audience

(feel free to use your own words). Write on a transpar
ency the lines marked WRITE (or use a transparency
you have already prepared with the text). The com
ments in parentheses may help you prompt your audi
ence to respond correctly.

YOU: "What are the names of all the turtles I can play
with today? I can find out by typing ... "

WRITE:
PRINT TURTLES
(or PRINT ALL in some versions; see the Notes
section).

YOU: ''What do you think Logo will answer?"
(Wait a moment to see if your "turtles" can guess the
answer.)

Spring 1992

WRITE:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(Go only as high as the numbered cards.)

YOU: "That's how many turtles I have altogether
all you turtles in this room. The command TURTLES
tells me who is available to play with. But who will
actually follow the commands I give? It may not be
all of you!"

WRITE:
PRINT WHO
0

YOU: "OK. I'm talking to turtle 0. Who has that
number? Let's try a command and see what hap
pens."

WRITE:
Raise your hand.
(Only the person with card 0 should raise his or her
hand. You may need to say to turtle 0, "Keep your
hand up. I didn't tell you to put it down, did I? Pay
attention!" This is spoken in fun, but reminds them
all to follow directions explicitly, just as the turtle
does.)

YOU: "Let's give a command to a different set of
turtles. I can use TELL to get one turtle or a group of
turtles to listen to me and follow my directions."

WRITE:
TELL TURTLES

(or TELL ALL
PRINT WHO

YOU: "Whoislisteningtomenow?Whatwill PRINT
WHO tell me?"

WRITE:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(as high as your turtles are numbered)
Raise your hand.
(Everyone should now raise his or her hand.)

YOU: "Great! Everyone's hand is up. You can put
them down now. Let's play a game! We'll see how
well you can follow directions."

WRITE:
TELL 0
Raise your hand.
Put your hand down.
TELL [0 1 2 3]
Raise your hand.

Volume 10 Number 3

Put your hand down.
TELL TURTLES
Raise your hand.
Put your hand down.
TELL EVEN.NUMBERED.TURTLES
Raise your hand.
TELL ODD.NUMBERED.TURTLES
Raise your hand.
TELL TURTLES

Put your hand down.

YOU: "Does this remind you of another game?"
(They will probably say, "Simon Says." If they don't,
you can suggest it.)

"Let' sadd another command-ASK. This command
lets you temporarily wake up any turtle or group of
turtles, even if they aren't in the WHO list. They'll
only listen to one instruction and then go back to
sleep. Here's an example:"

WRITE:
TELL
[0 1 2 3]

Wave to me.
Stop waving.
ASK 4 [Wave to me. Stop waving.]

Wave to me.
(Turtles [0 1 2 3] should wave again because they are
the turtles in the WHO list. Turtle 4 went back to
sleep as soon as it stopped waving.)

YOU: "Who should be waving? Let's check."

WRITE:
PRINT WHO
0 1 2 3

YOU: "When would you want to use ASK? Here's an
example to think about."

WRITE:
TELL READING.GROUP
Voice from the intercom: "Please send someone to
the office with your attendance."
ASK JOHNNY [Please take the attendance

to the office.]

Read Page 4.

YOU: "Who should be reading page 4, the reading
group or Johnny?"

(The reading group.)

LOGOEXCIIANGE 7

8

"ASK is really a TELL command that is only active
for one instruction line."

"Here is something you could type into Logo. Can
you figure out what this instruction will do?"

WRITE:
TELL 2 [SETHEADING ASK 3 [HEADING]]

YOU: "It tells turtle 2 to ask turtle 3 what its heading
is, then it sets its own heading to be the same. Turtle
2 sets its heading to wherever turtle 3 is pointing.
When we're done with that instruction, we are talk
ing to 2, not 3. That is a little complicated, but shows
you a bit of the power of ASK. "

"One more new command: EACH tells Logo to ASK
each active turtle to run a list of instructions. When
it's each turtle's tum, it acts as if it were the only
turtle in the WHO list."

WRITE:
TELL TURTLES
EACH [Say WHO you are (your

turtle number) .]

(Each person should say aloud his or her turtle
number, starting with turtle 0.
You should hear "0", "1", "2", "3", "4", etc., up to the
highest numbered turtle.)

EACH [REPEAT WHO [Clap]]

(Each person should clap as many times as their
turtle number, starting with turtle 0, who doesn't
clap at all! It's as if the following commands were
given:

ASK 0 [REPEAT 0 [CLAP]]
ASK 1 [REPEAT 1 [CLAP]]
ASK 2 [REPEAT 2 [CLAP]]
ASK 3 [REPEAT 3 [CLAP]],

and so on ...)

EACH [Say which month you were born
in.]

(Each person, starting with 0, should give his or her
birth month

YOU: "Here's an interesting example using EACH.
See if you can figure out what to do."

WRITE:
TELL [0 1 2 3]
Stand up.
EACH [SETHEADING WHO * 90]

hltt LoooExcHANGE

(Turtle 0 should face the front of the room: 0°. Turtle
1 should do a right 90 to face 900 -its WHO number
* 90. Turtle 2 shou!d face the back of the room, doing
SETHEADING 2 * 90, or 180°. Turtle 3 should face
toward the left, having done a SETHEADING 3 * 90,
or 270°.)

Pop Quiz!
1. Which command tells you which turtles are

listening to you? (WHO)
2. Which command lets you talk to a sleeping

turtle? (ASK)
3. Which command tells you all the turtles you

have to play with? (TURTLES) or (ALL)
4. Which command lets you talk to your turtles

one at a time? (EACH)
5. Which command lets you address a particular

group of turtles? (TELL)

Notes
If your version of Logo doesn't have a TURTLES or

ALL command, which reports a list of all available
turtles, you can write one as follows:

TO TURTLES
OUTPUT [0 1 2 3] (include as many numbers as

you have people)
END

One of the previous example included the words
EVEN.NUMBERED.TURTLES and ODD.NUM
BERED.TURTLES. You can create your own proce
dures called EVEN and ODD and actually type instruc
tions like TELL EVEN and TELL ODD to talk to differ
ent groups of turtles:

TO EVEN
OUTPUT [0 2 4 6 8 10 12 14]
END

TO ODD
OUTPUT [1 3 5 7 9 11 13 15]
END

At the Computer
When your students get to the computer, they can

try using all these commands. Have them invent in
structions that use TELL, ASK, EACH, and WHO.

You may want to have them experiment to find the
difference between these two commands (assuming
that SQUARE has already been defined):

TELL [0 1 2 3]
SQUARE
EACH [SQUARE]

Spring 1992

Which instruction causes the turtles to draw a
square one at a time?

Which instruction causes the turtles to draw a
square all at the same time?

Sometimes you want all the turtles to draw all
together, in unison. At other times, you'll want them to
take turns. Practice these commands until you have
complete control over all your turtles.

Ideas for Using Multiple Turtles

Now that you know how to control multiple turtles,
what can you do with them? Here are some ideas to get
you started.

• Dress your turtles in the shapes of cars or horses,
and have a race. Use the instruction EACH [FOR
WARD 10 +RANDOM 20] so that they will each
go forward a random amount (between 10 and
29).

• Move your turtles to different spots on the screen
and create a simple connect-the-dots game. Have
each turtle label its position with its WHO num
ber. Send the turtles home and have one of them
draw a line from number to number.

• Give each turtle the shape of a letter and scramble
words by placing the turtlesatrandom positions
on the screen. You can also stamp the shapes to
form word puzzles.

• Give one turtle the shape of a locomotive and
several others the shape of a train car. Line them
up so that they look like a train. Use TELL to talk
to all of them so that when you give a forward
command, they all move together. You have just
created a megashape!

• Draw a checkerboard by lining up eight turtles
at the bottom of the screen. Have them each
draw a column of squares, all at the same time.

Happy Logo adventures with multiple turtles!

Dorothy Fitch has been director of product devel
opment at Terrapin since 1987. A former music
educator, she has also directed a computer edu
cation classroom for teachers and students and
provided inservice training and curriculum de
velopment for schools. She is the author of Logo
Data Toolkit and coauthor of Kinderlogo, a single
keystroke Logo curriculum for young learners.

Volume 10 Number 3

At Terrapin, she coordinates software develop
ment, edits curriculum materials, writes docu
mentation, and presents sessions at regional and
national conferences.

Dorothy Fitch
Terrapin Software, Inc.

400 Riverside Street
Portland, ME 04103

CompuServe: 71760,366
Internet: 71760,366®COMPUSERVE.COM

207/878-8200

LocoExcHANGE 9

10

The International Computer Problem Solving Con
test (ICPSC) is an annual event that challenges teams
throughout the world to create original solutions to a
set of five problems within two hours using a program
ming language. The purpose of the ICPSC is to chal
lenge the very best problem solvers in Grades 4-12, yet
make it possible for beginners to have some success.
Teams of one to three members each enter the con test in
the Elementary (Grades 4-6), Junior (Grades 7-9), or
Senior (Grades 10-12) division. This is a report of the
Logo Division winners.

Elementary Logo Division
The best solutions to the Elementary Logo Division

problems were written by a team of two girls, Chelsea
Jones and Robin Featherstone, from St. Michaels Uni
versity School in Victoria, B.C., Canada. Chelsea, an
outstanding student in science, mathematics, and com
puters, spends a lot of time on her home computer. Last
year she was a member of a team of three girls who also
solved all five problems and ranked fourth internation
ally. Chelsea has also completed the training for the
NASA student astronaut program. This was Robin's
first try in the contest. In addition to working with
Logo, she likes riding horses. The advisor for the team
was Dr. Lex McMaster.

Junior Logo Division
The team of John Sullivan and Mark James from

Colaiste an Spioraid Naoimh, Bishopstown, Cork, Ire
land, ranked number one in the Junior Logo Division.
Both boys are 15 years old and have excellent math
ematical ability. John was recently awarded a medal in
the Canadian Mathematics Competition.

This was the fourth time John and Mark entered the
ICPSC. They began in the Elementary Logo Division
and have been ranked internationally each year. Mark
placed second in the Junior Logo Division in 1989-the
same year he was the Irish National Logo Champion
while John was the runner-up.

In his spare time Mark enjoys painting miniature
figures and reading, while John likes tennis and cy
cling. The local contest director and team advisor was
Michael D. Moynihan.

Senior Logo Division
The team of David Frink and Charles Powell from

Enloe High School in Raleigh, North Carolina, placed

ttttt LoGoEXCIIANGE

1991 ICPSC Logo
Winners

by Donald T. Piele

first in the Senior Logo Division. David and Charles
learned to love Logo in the third grade with their
teacher Dorothy Hardin. They began competing in the
ICPSC in the third grade and have continued up to this,
their senior, year. By the fourth grade they were win
ning the local contest in Wake County and by the sixth
grade they were solving all five problems and being
ranked internationally.

This spring both Charles and David were selected
by their geometry teacher to represent Enloe High
School at the regional contest for the State High School
Mathematics Contest. They were successful in the re
gional contest, and David went on to place third in the
Geometry Division of the state contest. Both boys at
tribute much of their success in geometry to their
knowledge of Logo programming.

The Wake County contest director was Cathay
Smith and the team advisor was Donna Frink.

How the ICPSC Works
The materials for running the contest along with a

set of problems and sample solutions are distributed to
local contest directors who have agreed to conduct the
contest locally during the last week in April-usually
the last Saturday. Local directors are free to offer local
recognition by rewarding the best local teams in any
way they choose. However, if a team solves all five
problems, a difficult task, their solutions are sent to us
for regrading and ranking among all teams that solved
five problems. Certificates are sent to each team mem
ber in this category, and the top-ranked teams receive
a plaque for their school.

The Local Contest
The person responsible for computer education in

a local school system often coordinates a local ICPSC. A
notable example is Cathay Smith, Computer Education
Program Specialist for the Wake County Public School
System. For the last nine years Cathay has organized a
county-wide contest that serves as a model on how to
run a local contest. This year, 67 teams from Wake
County entered in the Open Division and 18 teams
competed in the Logo Division. Many teams from
Wake County solved all five problems, and three teams
were ranked first in their division.

A set of procedures she uses to conduct the contest
in Wake County is available upon request for teachers
or program specialists.

Spring 1992

1992 Contest
In 1991, the Logo Division problems were devel

oped with the assistance of James King, a member of the
Mathematics Department at the University of Wash
ington. In 1992, we will continue with three Logo
divisions: Elementary, Junior, and Senior.

New in 1992 will be a HyperTalk Division for
students who have learned how to program using
HyperCard for the Macintosh. The design of the contest
will differ slightly, and programs will be judged by
submitting HyperCard stacks on disk rather than pro
gram listings and sample runs on paper. This contest
will be developed with the help of Joseph Hofmeister of
Cincinnati Country Day School. Joe is the coauthor of
Learning With HyperCard, published by South-Western
Publishing Company.

The 12th Annual ICPSC will be held on Saturday,
April 25, 1992, with Friday, April 24, and Monday,
April27, as the alternate dates. To learn more about the
1992 ICPSC, please send a request for a free copy of
Computelt!This publication contains information about
the 1992 ICPSC along with a registration form and an
order form for previous sets of contest problems and
solutions. Solutions are now provided in the language
of the corresponding division.

Donald T. Piele
P.O. Box 085664

Racine, WI 53408

ICPSC:
Brian Harvey

Responds
As a results of a series of email interactions
between your editor and Brian Harvey, the
followingletterwas "intercepted" onitswayto
The Computing Teacher.In it, Brian refers to the
following problems from the non-Logo ICPSC
contest.

Elementary Division: Write a program that will
create the letter E of any odd size N < 20. Test
your program for N = 7, 9.

Junior Division: Write a program that will cre
ate the letter Vofanyevensize N 520. Test your
program of N = 9, 10.

Volume 10 Number 3

Senior Division: Write a program that will
create the letter A for any even size N :s; 20. Test
your program for N = 9, 10.

Since this issue of LX ~ontains last year's ICPSC
Logo contest results, Brian's thoughts seem
appropriate for LX readers to consider. With
Brian's permission, his letter follows.

Dear Editor:

Every year Donald Piele publishes his contest re
sults in The Computing Teacher, and every year I have the
same reaction: Why is Logo excluded from the "open"
division and relegated to a separate contest of its own?
This ghettoization helps perpetuate the myth that Logo
is somehow a less serious language than BASIC, Pascal,
or C, when in fact the opposite is much closer to the
truth.

Perhaps the idea is that some people who've stud
ied Logo have only studied graphics. If so, the divisions
should be renamed "Graphics Division" and "Text
Division"; programmers in those other languages
should have the right to attempt graphics problems just
as Logo programmers should have the right to attempt
nongraphics ones.

In Logo we can, for example, solve the three letter
drawing problems from the article in the same way
they'd be solved in any of the "open" languages, i.e., a
FOR loop:

TO E :SIZE
STARS :SIZE
REPEAT (:SIZE-3)/2 [STARS 2)
STARS :SIZE-1
REPEAT (:SIZE-3)/2 [STARS 2]
STARS :SIZE
END

TO STARS :NUM
REPEAT : NUM [TYPE "*]
PRINT [)
END

TO V :SIZE
FOR "I 1 :SIZE-1

[SPACESTAR :I-1 2
SPACESTAR 2*(:SIZE-(:I+l)) 1
PRINT []]

SPACESTAR :SIZE-1 1
PRINT [)
END

TO A :SIZE
SPACESTAR :SIZE-1 1

LoooExcHANGE hJtt 11

12

PRINT []
FOR "I 2 :SIZE/2

[SPACESTAR :SIZE-:I 2
SPACESTAR 2*(:I-2) 1
PRINT []]

SPACESTAR (:SIZE/2)-1 :SIZE+1
PRINT []
FOR "I (:SIZE/2)+2 :SIZE

[SPACESTAR :SIZE-:I 2
SPACESTAR 2*(:I-2) 1
PRINT []]

END

TO SPACESTAR :SPACENUM :STARNUM
REPEAT :SPACENUM [TYPE CHAR 32]
REPEAT : STARNUM [TYPE "*]
END

TO FOR :VAR :FROM :TO :STUFF
LOCAL :VAR
MAKE : VAR :FROM
IF :FROM > :TO [STOP]
RUN :STUFF
FOR :VAR :FROM+l :TO :STUFF
END

Although Logo doesn't include a FOR loop as a
primitive control structure, I wrote the one just given
for use in this problem. I also found it helpful to write
a procedure SP ACEST AR that types a given number of
spaces followed by a given number of asterisks.

To show off a little, I'll present a set of Logo tools
that solve the same three letter-drawing problems in a
more general way and that can easily be extended to
other letter forms.

The general idea in each of these problems is that
there is a pattern of certain numbers of spaces and
asterisks; some of the numbers change by constant
amounts between lines (e.g., the number of spaces
inside the V decreases by 2 between lines); and certain
lines are exceptions that don't follow the pattern. For
example, consider the letter V. The general pattern is
some number of spaces, then asterisks, then spaces,
then asterisks. For an eight-line V, the numbers start at

[0 2 12 1]

(that is, 0 spaces, 2 asterisks, 12 spaces, 1 asterisk). The
change between lines is

[1 0 -2 0]

(That is, we add 1 to the number of spaces on the left,
add 0 to the number of asterisks on the left arm of the V,
subtract 2 from the number of spaces inside the V, and

ttttt LoGoExcHANGE

add 0 to the number of asterisks on the right arm of the
V.) The printing pattern is

[. * . *]

in which the periods represent spaces and the asterisks
represent themselves. (I'm using periods to represent
spaces both because it's easier to see in the program
listing and because spaces are used in Logo to separate
list elements, so it's messy, although possible, to have a
space as a list element itself. The program will, how
ever, actually print spaces in its output when we put
periods in the pattern.) The only exception is the last
line, in which the printing pattern should be

[. - - *]

In this pattern, the hyphen means not to print anything,
not even a space, for the corresponding number.

For each letter shape, we have to specify an initial
set of numbers, a set of change values, a standard
pattern, and perhaps some exception patterns. Here's
how we'll do it:

TO V :SIZE
LETTER :SIZE ;how many lines

;initial list of numbers:
(LIST 0 2 2*(:SIZE-2) 1)
;change values for numbers:
[1 0 -2 0]

END

;normal print pattern:
[. * . *]
;exception list:
[-1 [.-- *]]

In the exception list, a positive number is a line
count starting from the top; a negative number is a line
count starting from the bottom. So the number -1 in the
V exception list refers to the bottom line. An additional
possibility, seen in the next example, is that an equal
sign instead of a number indicates an exception on the
middle line.

The letter E has two stars on every line, except for
the first and last lines, with SIZE stars, and the middle
line, with SIZE-1 stars:

TO E :SIZE
;how many lines
LETTER :SIZE

;initial list of numbers:
(LIST 2 :SIZE :SIZE-1)
;change values for numbers:
[0 0 0]
;normal print pattern:

Spring 1992

[* - -]
;three exceptions:
[1 [- * -] -1 [- * -] [- - *]]

END

The letter A has two exception lines, one at the top
and one in the middle:

TO A :SIZE
LETTER :SIZE ;how many lines

;initial list of numbers:
(LIST :SIZE-1 2 -2 1)
;change values for numbers:
[-1 0 2 0]

END

;normal print pattern:
[. * . *]
;two exceptions:
[1 [. -- *) - [. * * *))

Okay, now we have to make this work by imple
menting the LETTER procedure. It uses a subprocedure,
LINE, which has one extra input, the number of the line
we're on:

TO LETTER :LINES :NUMBERS :CHANGES
:DEFAULT :EXCEPTIONS

LINE 1 :LINES :NUMBERS :CHANGES
:DEFAULT :EXCEPTIONS

END

TO LINE :LINENUM :TOGO :NUMBERS
:CHANGES :DEFAULT :EXCEPTIONS

IF :TOGO = 0 [STOP]
DISPLAY :NUMBERS (SELECT :LINENUM

:TOGO :DEFAULT :EXCEPTIONS)
PRINT []
LINE (:LINENUM+l) (:TOG0-1) (ADDVEC

:NUMBERS :CHANGES) :CHANGES
:DEFAULT :EXCEPTIONS
END

DISPLAY is the procedure that types asterisks and
spaces on a single line. Its two inputs are the list of
numbers for this line and the print pattern that applies
to this line. That print pattern is chosen by SELECT,
which outputs the default pattern unless one of the
exceptions is relevant to the current line. Finally,
ADDVEC performs a vector addition, i.e., it takes two
lists of numbers and adds the corresponding elements
of the two lists. That's how we apply the changes to the
numbers as we move to the next line:

Volume 10 Number 3

TO DISPLAY :NUMgERS :PATTERN
IF EMPTYP :NUMBERS [STOP]
REPEAT FIRST :NUMBERS
[DISPLAYONE FIRST :PATTERN]

DISPLAY BUTFIRST :NUMBERS
BUTFIRST :PATTERN
END

TO DISPLAYONE :CHAR
;do nothing for - :
IF EQUALP :CHAR "- [STOP]
;space instead of ,
IFELSE EQUALP :CHAR "
[TYPE CHAR 32]
[TYPE :CHAR]
END

TO SELECT :LINENUM :TOGO :DEFAULT
:EXCEPTIONS

;no exception applicable:
IF EMPTYP :EXCEPTIONS [OUTPUT
:DEFAULT]
;matched count from top:
IF EQUALP FIRST :EXCEPTIONS :LINENUM

[OUTPUT FIRST BUTFIRST
:EXCEPTIONS]
;matched count from bottom:
IF EQUALP FIRST :EXCEPTIONS
(0- :TOGO)

[OUTPUT FIRST BUTFIRST
:EXCEPTIONS]
IF AND (EQUALP FIRST :EXCEPTIONS "=)

;middle line for odd-size letter:
(OR (EQUALP :LINENUM :TOGO)
;middle line for even-size

letter:
(EQUALP :LINENUM :TOGO+l))
[OUTPUT FIRST BUTFIRST

:EXCEPTIONS]
OUTPUT SELECT :LINENUM :TOGO
:DEFAULT (BUTFIRST BUTFIRST
:EXCEPTIONS)
END

TO ADDVEC :A :B
IF EMPTYP :A [OUTPUT []]
OUTPUT FPUT (SUM FIRST :A FIRST :B)

(ADDVEC BUTFIRST :A BUTFIRST :B)
END

Of course this solution is more complicated than
my earlier, BASIC-like version. But this flashy tech
nique allows me to show off Logo's ability to deal with
variable-size data aggregates, in this case the lists of
numbers that control the patterns of the lines. (By the

LOGOEXCHANGE 13

14

way, these procedures work for both even and odd
sizes of any letter, with no limit other than thatimposed
by the width of the screen.)

I haven't included the part about prompting the
user to enter a number; instead, I've made use of Logo's
provision of procedures that take inputs. You'd draw
an eight-line letter A by typing

A 8

If you prefer the prompt-and-read style, we can do that
too:

TO DRAWA
TYPE [Enter an even number:]
A (FIRST READLIST)
END

Myprogramislongerthanasolutionthatiswritten
from scratch for each letter shape. But now that I've
written the program, I can handle other letters without
having to rewrite it all:

TO H :SIZE
LETTER :SIZE

(LIST 1 :SIZE-2 1)
[0 0 0)
[* . *)
[- [* * *]]

END-

TO J :SIZE
LETTER :SIZE

END

(LIST (:SIZE-1)/2 1 (:SIZE-1)/2)
[0 0 0]
[. * .]
[1 [* * *] -1 [* * .]]

TO N :SIZE
LETTER :SIZE

END

(LIST 1 -1 1 :SIZE-2 1)
[0 1 0 -1 0]
[* . * . *]
[1 [* - - . *] -1 [* . - - *]]

The LEITER procedure does not work for letters
like Band D, in which the change per line isn't constant;
nor does it work for R, in which two entirely different
patterns are used in the top and bottom halves. But the
approach could be generalized, with some extra design
effort, to encompass those cases. The big idea illumi
nated by this approach is that of data-directed pro
gramming; pattern lists like [. "' . "'] customize the

program so that the instructions can remain unmodified
no matter what letter we want to display.

I couldn't resist throwing in a computer science
lesson, but let me end by recalling my original purpose
in writing this letter. I appeal to the organizers of the
contest to stop discriminating against Logo, and to
teachers of computer science to consider Logo as a
powerful vehicle for advanced general-purpose pro
gramming.

Sincerely yours,

Brian Harvey
Computer Science Division
University of California
Berkeley, CA 94720
bh®cs.Berkeley.EDU

Spring 1992

Can Logo be used to solve "real-world" problems,
or must Logo challenges be contrived and solved from
within simulated contexts, such as turtle graphics or
LEGO/Logo? Recently, I received an interesting re
quest by electronic mail that showed me that Logo can,
in certain situations, function as more than an educa
tional tool.

The Challenge
The electronic message was from Talbot Bielefeldt,

the patient and witty associate editor for the Interna
tional Society for Technology in Education (ISTE). In
part, he asked,

Would you be interested in a programming
problem for dear old ISTE? I am part of a
committee charged with coming up with a new
tagline or motto for the organization. The cur
rent one is "Educational Leadership in the Age
of Information Technology." Quite a mouth
ful. It's so cumbersome, we never use it.

After an initial brainstorming session, we came
up with a list of concepts, which I expanded
[upon] with the aid of an electronic ... thesaurus.
Our next step is to see how these might be
constructed into some mottos. It seems to me
there are several syntax patterns appropriate
for a tagline. They include:

participle I noun
([example:] "Making Waves")

participle/preposition/noun
([example:] "Working for Change")

preposition/ adjective I noun
([example:] "For Better Education")

noun/participle/noun
([example:] "Teachers Helping Students")

preposition I verb I noun
([example:] "To Change Education")

All essentially complete the sentence "ISTE
is ... "

At this point, like any Logo fan(atic), I was smiling and
already planning how I might procrastinate meeting
my less interesting deadlines so that I could begin work
on this special Logo challenge.

Volume 10 Number 3

Logoed Mottos
by Judi Harris

Jumping In
Talbot had included five brainstormed word lists

(nouns, verbs, adjectives, prepositions, and participles)
at the end of his message. I downloaded the message,
copied the word collections to a new Logo Writer page,
and turned each into a procedure that OUTPUTs a list
that contains all words in a particular category. These
procedures are listed below.

TO NOUN
OUTPUT [education change future

world technology solutions oppor
tunity challenge vision questions
issues earth society humanity
outlook prospect resolution an
swer key innovation transforma
tion difference guidance knowl
edge learning teachers learners
students teaching advocate voca
tion passion force power light
liberation renewal creation des
tiny individual center] END

TO VERB
OUTPUT [guide know learn expect

imagine envision transfigure
change transform resolve answer
solve serve summon dare question
confront help motivate kindle
encourage inspire awaken excite
spark advocate light ignite lib
erate creating]

END

TO ADJECTIVE
OUTPUT [educational effective dy

namic meaningful true relevant
instructional inspiring produc
tive current strong constructive
practical useful active expert
exciting rightful authentic cer
tain positive destined central
far farthest]

END

TO PARTICIPLE
OUTPUT [guiding knowing learning

expecting imagining envisioning

LocoExcllANGE 15

16

END

transfiguring changing transform
ing resolving answering solving
serving summoning daring ques
tioning confronting helping
striving]

TO PREPOSITION
OUTPUT [of by for to in into within

inside [out of] with]
END

That was the easy part. I paused to marvel at how
fascination with language structures can translate into
Logo programming opportunities as easily as can
fascination with geometric figures or the physics of
movement.

Choosing a Method

me,
In another part of his message, Talbot had asked

... do you have some code lying around that you
could modify to generate a heap of sample
taglines? The program would use the syntax
elements as variables and the word lists as
input.

Not bad for an only-occasional Logo tinkerer, eh? Tal
bot had recognized a "Logo-like" problem and men
tally constructed a tentative blueprint for the proce
dures that could give the committee their desired out
put. He went on to predict,

Many of the combinations would be garbage.
A few might be quite amusing. But it would be
one way [for us] to get a start ...

At this point, I realized that Talbot was requesting
output from a set of Logo procedures that would gen
erate possible pennutations of words according to each
of the five syntactical structures mentioned earlier in
his message. Those combinations could be generated
one at a time and at random, or all possible permuta
tions could be generated and listed.

Simple Sampling
Telling Logo to generate random combinations

according to predetermined syntactical structures is an
easy task. The PICK tool can be used to make random
selections from within each of the five word type lists
(nouns, verbs, adjectives, prepositions, and participles):

TO PICK :LIST
OUTPUT ITEM (1 + RANDOM COUNT :LIST)

:LIST
END

hJtt LoooExcliANGE

Combined with a simple PPN procedure that concat
enates random selections from named word lists, the
PICK tool and the primitive PRlNT quickly form possi
bilities for the ISTE motto in a participle/preposition/
noun format:

TO PPN
OUTPUT (SENTENCE PICK PARTICIPLE

PICK PREPOSITION PICK NOUN)
END

Typing PRINT PPN may cause the computer to pro
duce

ENVISIONING WITH INNOVATION

or ...

SUMMONING TO CHALLENGE

or ...

GUIDING INTO LIBERATION

Procedures similar to PPN could be coded to yield
potential ISTE mottos in other formats. For example,
TO PVN could be used to generate random preposi
tion/verb/noun permutations:

TO PVN
OUTPUT (SENTENCE PICK PREPOSITION

PICK VERB PICK NOUN)
END

Of course, concatenation tools such as PVN could out
put

INTO RESOLVE EARTH

as easily as they could produce

TO GUIDE TRANSFORMATION

The disadvantage to giving tools such as these to
Talbot and the motto committee is, of course, that
someone would have to keep typing some version of
the PRINT PICK (concatenation type) procedure ex
ecution until Logo randomly generated meaningful
phrases that could be used as motto candidates. I sus
pected that the committee wanted a more time-efficient
way to review motto ideas than using procedures that
produced one option at a time.

Spring 1992

Permutation Possibilities
The real challenge, I was soon to discover, was to

write a setofl.ogo procedures that would generate and
print all possible permutations of mottos within each
format type. Since the numbers of motto options in the
participle/preposition/nounstructurealone were more
than 7,700, I decided to create three smaller lists with
which to experiment with Logo permutation.

Inspired by the November ice storm that rages
outside my door as I write this column, and the knowl
edge that many of you will be enjoying spring weather
as you read about Logo mottos, I decided to create lists
of SEASONs, Sf A TEs of being, and DESCRIPTORs:

TO SEASON
OUTPUT [WINTER FALL SUMMER SPRING]
END

TO STATE
OUTPUT [[WILL BE] WAS IS]
END

TO DESCRIPTOR
OUTPUT [COMING HERE]
END

There are 24 possible permutations of words in a sea
son/state/descriptor format. They are:

SPRING IS HERE
SPRING WAS HERE
SPRING WILL BE HERE

SUMMER IS HERE
SUMMER WAS HERE
SUMMER WILL BE HERE

SPRING IS COMING
SPRING WAS COMING
SPRING WILL BE COMING

SUMMER IS COMING
SUMMER WAS COMING
SUMMER WILL BE COMING

FALL IS HERE
FALL WAS HERE
FALL WILL BE HERE

FALL IS HERE
FALL WAS HERE
FALL WILL BE HERE

Volume 10 Number 3

WINTER IS COMING
WINTER WAS COMING
WINTER WILL BE COMING

WINTER IS COMING
WINTER WAS COMING
WINTER WILL BE COMING

As you can see, each element from each category
must be combined with every other element from every
other category. A multiple (embedded) recursive struc
ture, with which as many calls to a COMBINE proce
dure as exist possible permutations, is one way to solve
this challenge:

TO COMBINE :ITEMl :ITEM2 :ITEM3
IF EMPTY? :ITEMl [STOP]
COMBINE BUTFIRST :ITEMl :ITEM2

:ITEM3
IF EMPTY? :ITEM2 [STOP]
COMBINE :ITEMl BUTFIRST :ITEM2

:ITEM3
IF EMPTY? :ITEM3 [STOP]
COMBINE :ITEMl :ITEM2 BUTFIRST

:ITEM3
MAKE "NEW.COMBINATION (SENTENCE

FIRST :ITEMl FIRST :ITEM2 FIRST
: ITEM3)

IF NOT MEMBER? :NEW.COMBINATION
:COMBINATIONS [ADD.TO.LIST]

END

TO ADD.TO.LIST
MAKE "COMBINATIONS LPUT

:NEW.COMBINATION :COMBINATIONS
END

As you can see in the last three lines of COMBINE, the
computer checks to see if a newly formed combination
of single elements from :ITEMl, :ITEM2, and :ITEM3
already exists in the "COMBINATIONS list before
adding it with the ADD.TO.LIST procedure. This is a
necessary step, since the embedded recursive-calls to
COMBINE cause some duplicate concatenations to be
formed.

The permutation process is initiated with a
superprocedure that I called PERMUTE3:

TO PERMUTE3 :ITEMl :ITEM2 :ITEM3
MAKE "COMBINATIONS []
COMBINE :ITEMl :ITEM2 :ITEM3
INSPECT :COMBINATIONS
END

LOGOEXCHANGE ttltt 17

18

PERMUTE3 initializes the value of the "combination
collector" global variable, "COMBINATIONS, then
directs COMBINE to execute, using the lists specified
as values for the local variables :ITEMl, :ITEM2, and
:ITEM3. Notice that all possible combinations are gen
erated and stored before any are printed for the user to
see. INSPECf (adapted from Bull and Cochran's tool
withthesamename)isthesubprocedurethatprintsthe
combinations, organizing them into several columns to
make viewing easier:

TO INSPECT :LIST
IF EMPTY? :LIST [STOP]
INSERT FIRST :LIST
IFELSE (FIRST CURSORPOS) < 50 [IN

SERT CHAR 9] [INSERT CHAR 13]
INSPECT BUTFIRST :LIST

END

Please note that all procedures in this article are written
in Logo Writer, but can be easily adapted to function in
any full-featured version of Logo.

Time Is All We Need
Excited that the permutation procedures worked

so well with my sample season/state/descriptor lists,
I eagerly invoked the superprocedure with PARTI
CIPLE, PREPOSmON, and NOUN as inputs:

PERMUTE3 PARTICIPLE PREPOSITION NOUN

Forty-five minutes later, my Macintosh SE/30 with 5
megabytes of RAM was still permuting. It is fortunate
thatmyMacseemstohavemorepatiencethanidowith
repetitive tasks, since it will faithfully generate and
store potential ISTE mottos for hours on end while I am
involved in more interesting work.

When Sharon Yoder, the editor of the Logo Ex
change, saw the code I had written for making permu
tations, she suspected, as I did, that there was a simpler,
more efficient way to tell the computer to make more
than 7,700 combinations. An electronic mail message to
Brian Harvey, the "Logo Wizard" <grin>, was all that
was needed to provide a much more elegant, economi
cal solution to this interesting problem.

Expertise Is Ultimate Time-Efficiency!
Brian suggested that we use all of the word-list

procedures and the INSPECT tool, along with these
three procedures that form a new Logo operation:

ttttt LoooExcH.-tNGE

TO COMBINE :LISTOFLISTS
IF EMPTY? :LISTOFLISTS
[OUTPUT [[]]]
OUTPUT PREPENDS (FIRST :LISTOFLISTS)

(COMBINE BUTFIRST :LISTOFLISTS)
END

TO PREPENDS :TOPS :BOTTOMS
IF EMPTY? :TOPS [OUTPUT (.]]
OUTPUT SENTENCE (PREPEND FIRST :TOPS

:BOTTOMS) (PREPENDS BUTFIRST
:TOPS :BOTTOMS)

END

TO PREPEND :TOP :BOTTOMS
IF EMPTY? :BOTTOMS [OUTPUT []]
OUTPUT FPUT (SENTENCE :TOP FIRST

:BOTTOMS) (PREPEND :TOP BUTFIRST
:BOTTOMS)

END

To generate, for example, all the possible motto combi
nations that contain participles, prepositions, and
nouns, we would type:

INSPECT COMBINE (LIST PARTICIPLE
PREPOSITION NOUN)

One of the most powerful aspects of Brian's solution to
this problem is that COMBINE can be used to permute
any number of elements into motto combinations, un
like PERMUTE, which must be altered depending
upon the number of elements to concatenate. That
means that Talbot and his committee can have all of the
output they requested with just five requests:

INSPECT COMBINE LIST PARTICIPLE NOUN
INSPECT COMBINE (LIST PARTICIPLE

PREPOSITION NOUN)
INSPECT COMBINE (LIST PREPOSITION

ADJECTIVE NOUN)
INSPECT COMBINE (LIST NOUN

PARTICIPLE NOUN)
INSPECT COMBINE (LIST PREPOSITION

VERB NOUN)

As I write this column this evening in Omaha, I am
envisioning Talbot and the motto committee's reac
tions as they receive five very large text files by elec
tronic mail when they return to work after a (hopefully)
restful weekend. Somewhere in the more than 30,000
possibilities that their word lists were used to create,
there just may be a new ISTE motto waiting to be
discovered and adop~ed. It delights me that Logo-and
more importantly, people's creativity and teamwork-

Spring 1992

fueledthesearch. Whynotshareasimilarcollaborative
language adventure with your students?

Judi Harris works in the Department of Teacher
Education at the University of Nebraska at
Omaha as an assistant professor of educational
technology. Her teaching, research, and ser
vice interests include Logo (of course), devel
opmental sequencing in educational hyper
media materials design, telecomputing for K-

In the December/January 1990/91 issue of Logo
Exchange, therewasanarticleentitled "Easy Map Draw
ing with Logo Writer." It included a listing of a program
to use to draw a map. Well, drawing using that pro
gram certainly was not easy. The program contained a
number of bugs. Following is a listing of the program
that has been tested in Macintosh Logo Writer and there
fore should run without any changes in any version of
Logo Writer.

to map
name pos "startingpos
name heading "starthd
ht
pd
startdrawing [] 0
end

to startdrawing :list :counter
if :counter = 25 [copylist stop]
name readchar "x
if :x = "f [forward 5 (name lput

[forward 5] :list "newlist)]
if :x = "r [right 15 (name lput

[right 15] :list "newlist)]
if :x = "1 [left 15 (name lput [left

15] :list "newlist)]

Volume 10 Number 3

12 teachers, and the restructuring of teacher
education paradigms.

Judi Harris
514J Kayser Hall

Department of Teacher Education
University of Nebraska at Omaha

Omaha, NE 68182

BITNET: }Harris@unoma1
Internet: JHarris@Zeus.unomaha.edu

Oops!

if :x = "g [right 90 (name lput
[right 90] :list "newlist)]

if :x = "t [left 90 (name lput [left
90] :list "new list)]

if :x = "d [if (first last :newlist)
= "forward [pe back 5 pd name
butlast butlast :newlist
"newlist]]

startdrawing :newlist :counter + 1

end

to copylist
flip
bottom
print []
print [pu]
(print [setpos] (list :startingpos))
(print [seth] :starthd)
print [pd]
print.list :newlist
end

to print.list :commands
if empty? :commands [stop]
print first :commands
print.list butfirst :commands
end

LoGoExcHANGE ttltt 19

20

Logo Foundation Announced

In the fall of 1991, Dr. Seymour Papert announced
the formation of the Logo Foundation, a not-for-profit
education organization devoted to the support ofLogo
usingeducatorsthroughouttheworld.MichaelTempel,
formerly director of educational services with Logo
ComputerSystems, Inc., is president of the Foundation.

The Logo Foundation has been a dream for many
years. It became a reality with commitments of initial
founding from Logo Computer Systems Inc., of
Montreal, and Logo Japan Inc., of Tokyo.

The creation of the Logo Foundation comes at a
time of profound change in the ways in which comput
ers are being used in schools. For many years, comput
ers have been concentrated in "computer labs" with
specialists providing instruction. Moving computers
into regular classrooms could have a major impact on
the learning culture.

"Logo is one of the most widely used and enduring
educational computer environments. It is designed to
support active, learner-centered education," said
Tempel. "Yet there are many teachers who, while shar
ing Logo's vision of education, do not use Logo. They
may see computers as irrelevant or even alien to their
way of thinking and working. The Foundation will
make a special effort to work with these educators."

The activities of the Logo Foundation will include:

• Comprehensive curriculum and staff devel
opment projects in a small number of schools
and districts. As part of these projects, Foun
dation staff members and consultants will
conduct workshops for teachers and assist
them in using Logo in their classrooms. These
projects will include the successful St. Paul
Logo Project, which has served hundreds of
teachers over the past nine years, and a new
alternative school project being initiated in
New York City's Community School District
3.

• A variety of workshops and seminars to be
organized directly with schools and districts
to meet their own specific educational needs.

• Organizational support for teachers wishing
to start Logo User Groups, such as those

ttltt LoGoEr.CII~tNGE

existing in New York and Los Angeles. The
Foundation will also establish communica
tion links among these groups.

• Publication of informational brochures, re
search summaries, workshop materials, and
curriculum units. These publications will
include materials that emerge out of the
Foundation's work in schools. Others will be
contributed by Logo-using educators
throughout the world. There will be a Foun
dation newsletter, to be published on a lim
ited schedule during the 91-92 school year
and monthly during the following school
years.

• The establishment of a public software and
materials library in the New York City Logo
Foundation office.

For further information about the foundation contact

Michael Tempel, President
Logo Foundation

250 West 57th Street, Suite 2603
New York, NY 10107-2603

212/765-4918
FAJ<:212/765-4789

Spring 1992

Recently the chairman of the middle school math
department at my school was thinking about asking his
students to attempt to derive a circle. He wondered
how the problem might be tackled with Logo. This set
me to thinking. I wanted to try something other than the
"classic'' Logo circle. You know, the one that goes
forward 1 right 1. I also remembered the procedures,
embedded in some versions of Logo that drew a circle
based on the radius. (See Judi Harris's LogoLinX col
umn in the Fall1991 Logo Exchange for these.) I wanted
something else.

Is There a Dot?
For these explorations you will need to check

whether the version of Logo you are using contains dot
as a primitive. How can you find out? Just load Logo.
Type the word dot. If Logo complains that it doesn't
know how to "dot" or that thereisnoprocedurenamed
"dot," dot is not a primitive in your version. Logo Writer
does not contain a dot, but it is an easy procedure to
write. Here is a Logo Writer dot

to dot
pd
forward 0
pu
end

If your version does not contain dot, you should
check to see if forward 0 produces a mark. Simply give
the command forward 0 and then hide the turtle. If you
see no mark, change the dot procedure to read as
follows:

to dot
pd
forward 1

back 1
pu
end

You need the turtle to move both forward and back so
that its position after making the dot is unchanged.
Withoutrestoringposition,youmightgetsomestrange
results in the following explorations. (Actually, that
might be interesting too, but not just now.)

Volume 10 Number 3

Dots!!!
Eadie Adamson

Back to the Past
I remember when I was using a version of Terrapin

Logo that did not have a fill command. I had several
strategies for producing a filled circle. One of them was
to draw a triangle, turn a little, and draw another
triangle, repeating the process until the turtle returned
to its starting heading. The procedure looked like this:

to fill.circle :size
repeat 360 [repeat 3 [forward :size

right 120] right 1]
end

When this procedure is run, the circle begins to
form:

This wasn't perfect, since it left some small spots
unfilled:

Eventually I hit on the strategy of moving forward the
distance of the radius, moving back the same distance,
and then turning. Slow, but it generally did a better job:

to fill.circle :radius
repeat 360 [forward :radius
back :radius right 1]
end

LOGOEXCHANGE 21

22

This procedure was actually quite useful, for it led to a
series of interesting projects. My filled circle could be
adapted to make a half circle:

to halfcircle :radius
repeat 180 [forward :radius back

:radius right 1]

end

and even a quarter circle:

to quarter.circle :radius
repeat 90 [forward :radius back

:radius right 1]

end

At about the same time I discovered one of Ed
Emberley's books, Picture Pie. My students and I fol
lowed up our filled circle work by trying· our hand at
creating Logo pictures a Ia Picture Pie. (If you don't
know about Ed Emberley, you should! His picture
books are a great resource for Logo users. You'll find
them in most children's bookstores. I'll bet your school
library has copies on the shelf too.)

The Circle Problem in a Different Vein
Recently at a New York Logo User Group meeting

we scheduled a hands-on hour. Michael Tempel, presi
dent of the Logo Foundation, and I decided to pose the
circle problem. After talking about the idea for a bit, we
divided into small groups to explore alternative meth
ods of constructing circles.

Thinking about this problem, I remembered the
strategies I had used previously to draw a filled circle.
There were strong similarities between these two prob
lems. The difference from my earlier "fill" project was
that this circle was not to be filled. Thus the problem, for
the moment, was reduced to obtaining a result similar
to my filled circle, but leaving only the outline of the
circle. (I thought back to some other experiments with
polygons-see "In theSpiritofPlay: Playful Polygons"
in the Logo Ideas column in the May, 1991, issue of LX.

Here Come the Dots
I proposed the "dot'' strategy to the group. We

wrote a procedure to trace the shape of a triangle,
placing dots at the points of the triangle and leaving no
lines between:

to tri :size
pu
repeat 3 [forward :size dot

right 120]
end

We tried rotating the triangle and-voila!-<>ur circle
began to appear:

Yes, it did have a dot in the center. (If you think about
why this occurs, it might give you a clue to what will
happen in some of the following explorations.)

We could have eliminated the dot in the center; but
instead, we pressed on to explore further. What would
happen if we used a square rather than a triangle? We
needed only to change the procedure name, the input to
repeat and the angle to 90°. The result surprised us. It
wouldn't be fair here to give you a picture of the result.
Try it or think carefully about it and see if you can
predict what we saw.

The odd result we got with a square prompted us
to leave the circle problem behind. After all, in a way,
we had solved it! Instead, we went off on a fascinating
digression to explore the effects of rotating dotted
polygons. We found ourselves attempting to predict
what we would see, wondering about relationships
between the number of sides or points of a polygon and
the resulting picture. We ran out of time before we
could address some other questions that arose:

• Is there a predictable relationship among the
graphics produced by different dotted poly
gons?

• Which comer or vertex makes the outer circle?
• Which one makes the inner circle?
• What is the relationship between these points

and the starting point?
• Is there a relationship among the diameters

that can be computed? (We thought there
would be.)

Spring 1992

I

I leave the experiment for you and your students to try.
You might make a chart of your results. Based on the
chart, try to predict the results of using polygons with
still more "sides." Can you deduce the relationship
between the number of circles and the number of sides
of the polygon? What might you say about the com
parative areas of the circles?

Further Ideas
Here are some further thoughts. First you might

write a generalized polygon procedure thatputsdotsat
the apex of each side (you could pose this as a problem
for your class to solve!):

to poly :sides :side
pu
repeat :sides [forward :side dot

right 360 I :sides]
end

Then use the generalized polygon to define a new kind
of circle procedure:

to cir :points :side
repeat 360 [poly :points :side

right 1]
end

This will work fine for the first few experiments. Even
tually you will find that turning less than 1 will help to
make an outer circle in this multiple-circle process
more likely to be a solid line:

to cir :points :side
repeat 720 [poly :points :side

right .5]
end

The only problem is that it takes Logo so long to
complete the drawing that it makes it come close to
being a "Logo Overnight" experiment! Hiding the turtle
while Logo draws will help some. You might, however,
want to run the procedure on several computers at one
time-and perhaps at a time when you could leave
them running and move on to something else. (A lunch
break, perhaps?)

To help you determine what you are seeing if you
have color monitors, you might also have the dot for
each corner of the polygon be a different color. This too
is a nice programming challenge for students. It works
best, of course, in versions of Logo with a wide range of
colors.

Using colored dots, can you build into your proce
dure a counter that will tell you with, say, 50 rotations
to the circle how many times the first dot out from the

Volume 10 Number 3

center encounters the second dot (if itdoesatall)?What
kinds of dotted polygons form their circles by overlap
ping dots?

A Hands-On Follow-Up
Since many students may find even these "con

crete" results difficult to believe, you might follow your
computer session with a hands-on activity in the class
room. Use Pattern Blocks to perform the same experi
ment or have the students create sets of regular poly
gons with Logo, print them, and mount them on card
board. Pin a comer of the shape to a sheet of paper and
experiment with creating circles. Place a dot at each
corner, then turn slightly and mark the comers again.
Or make the shape into a minicompass by putting the
pencil on one comer, and turning the shape while
keeping the pencil at the corner. This will draw one
circle. Repeat the proce~s with the next comer. And
again with the next. If this is done carefully, concentric
circles will emerge.

A Different Circle
Here's another circular-problem idea for a "Week

end Logo" experiment: Write a procedure to draw a
septagon, a seven-sided regular polygon:

to septagon :size
repeat 7 [forward :size

right 51.4286]
end

Draw one septagon, then check the turtle's position by
using

show pos

You will see that the turtle just misses returning home
by a small fraction. One might tend to say that the
fraction is so small it doesn't matter. But try drawing
the septagon over and over without returning home. It
will take a very long time before it becomes clear that a
little error can be very important indeed. It just depends
on the situation. For instance, if you're on a spaceship
aiming for Uranus, that fraction would certainly cause
you to miss your destination.

One of my students and I tried to find out what
might happen with this errant septagon when the pro
cedure runs for a long time. Our first experiment ran for
nearly five hours on a Macintosh. This produced 100,000
septagons. We plan to set up a weekend experiment to
see if what we think will happen over a much longer
time is correct. First we'll estimate how many hours we
want the experiment to run. Then we'll build a proce
dure to do the work. The number of hours divided by
5 will give us the approximate number of times to

LOGOEXCIIANGE ttttt 23

24

repeat drawing 99,999 septagons. While we're about it,
we'll use the Macintosh Logo Writer clock primitive to
report starting and ending times. Here's what we'll
probably use:

to test
(print [Starting time:] clock)
repeat 11 [repeat 99999

[septagon 50]]
(print [Finish time:] clock)
end

What do you predict we will see on Monday morning?
Would the result be different if the septagon procedure
were written

to septagon :size
repeat 7 [forward :size right 360/7]
end

Explorations such as this can lead to discussions of
"machine arithmetic." If this is not an area with which
you are familiar, you might ask a computer science
teacher from your school system to discuss this kind of
error with your class.

References
Emberley, E. (1984). Picture Pie. Boston: Little, Brown

and Company.

Eadie Adamson teaches at The Dalton School,
where she works primarily with students in
Grades 4-8, using Logo Writer, LogoExpress, and
LEGO TC logo. She also works with math and
language classes using Logo Writer.

Eadie Adamson
The Dalton School
108 East 89th Street

New York, NY 10128
212/722-5160

E-mail: LCSI LugoExpress BBS, New York and
Montreal: EadieA

CompuServe: 73330,3266

A First Course in Programming
in Te"apin Logo, Logo Writer, and PC Logo

This is a complete curriculwn for a semester course in programming. It includes student
activity sheets, teacher lesson preparation sheets, tests, quirr.es, assignments, and sample

solutions for all student assignments (hard and softcopy!)

A First Course in Programming is a directed learning environment in structured
programming. Its 450 pages emphasize problem solving strategies, critical thinking skills

and solid principles of computer science.

Only $150 for a building site license. Call us for further infonnation!

Curriculum written BY teachers FOR teachers!

ttltt LOGOEXCHANGE
Spring 1992

Sanity and the Single Computer (Part 2)

The six-year old at the computer in the library
corner has been working on a drawing of a boy playing
ball.For20minutesshehasbeenclearingandredrawing
and is finally satisfied with the turn of the arm. The
teacher now suddenly turns the lights off and an
nounces clean-up time. Or the timer that gave her 20
minutes to work has sounded and the next child doesn't
wanttowaitanylonger.Orthe20minutesofredrawing
that arm was proving too frustrating, and what started
out as an appealing challenge is now causing distress.

Up until a few months ago the above scenarios
would have resulted in cries of "But I'm not finished!"
My answer would have had to be, "You'll do it again
tomorrow. Don't worry, your work always gets better
with practice." The effects of this, in addition to the
occasional tears, more frequent chair-slamming, and
routine feelings of just making do, was that children
would accept less than their best in order not to run out
of time or patience.

I began a student disk to save the best work, but
because it meant I had to interrupt the group I was
working with, manually stop the Instant program the
child was using, clear the startup section it contains,
and get out the other disk, I only agreed to save the
"best'' work. This teacher-directed selection added a
level of evaluation that again runs contrary to child
guided exploration and self-evaluation. This proce
dure also meant that I had to get involved again to
reboot the child's work on demand, again encouraging
cries of "Judi, I need ... " or "Get me ... " So, back to the
late-night drawing board.

To deal with my problems, I developed a new
Instant program, called super.draw. In this version the
single-key command "X" brings up the save program.
There is a double.check procedure so that the child can
always get back into the drawing without clearing the
screen. Many of the children are non- or beginning
readers, so the steps have to be regular and the direc
tions clear and simple. I numbered three double-sided
disks from 1 to 6; four children's names were put on
each side.

PUT YOUR DISK IN NOW.
NAME THIS PAGE.

directs the child to finq his/her own disk from the box
next to the computer. Many children had already been
computer monitor for the month, so they knew how to
handle a disk.

Volume 10 Number 3

by Judi Menken

I was concerned that naming pages effectively and
accurately would be a problem. But I found again that
high motivation and focused procedures enable young
children to achieve complex results. I might have to
model naming a page the first time for a child, but I was
amazed at how quickly they all picked up the idea of
choosing a simple title for their work, one that would
make it easy to recognize again.

These children do writing regularly, and invented
spelling is an integrated component of many daily
activities. If a child needs help spelling his/her page
name, he/ she knows by now to ask a nearby classmate.

My impetus for getting this save program orga
nized was to disentangle myself even further from the
children's independent use of my two classroom com
puters. I hadn't anticipated how much it would free
them of the time constraints of classroom life. Children
became willing to work for higher goals that they set for
themselves; they became much more particular about
what their work should look like. I found that what I
had thought was just rambling around on the screen for
many kids was actually a planned drawing, even if that
plan was constantly being revised. Children were never
at a loss for what to name:! their page.

Another unexpected bonus was what happens
when the same child has to load his/her own disk. Any
student planning to continue previous work has to
learn Open Apple-S to stop the currently running In
stant program, use the Escape key, and change the
disks-no problem! I'm not even counting the rein
forcement of working in a sequence and following
directions,·au those basic Logo extras for young chil
dren.

What I wasn't prepared for was the ease with
which emergent readers could scan a lengthy contents
list of very similar entries and zero in on "M.W .BOYS"
rather than "S.M.2BOYS." How's that for a demonstra
tion of the power of whole language? The seemingly
nonsense letters have real meaning in that context. I
had been withholding information and skills on the
pretense that the children were too young, even though
I am always preaching that primary-grade students can
accommodate very complex sophisticated concepts and
projects if these concepts and projects are arranged and
presented in concrete, carefully defined building blocks.

Here I am writing a rout general curriculum. And
I thought I was looking at just a Logo problem!

LOGOEXCHANGE

26

The Super.Draw Program
As the children gain experience the commands are

also expanded to make more subtle moves and include
more possibilities, including ''X" to save their work.

to startup
ct
cg
pu
setpos [-100 50]
setc 2
pd
seth 0
stamp
pu
right 90
forward 20
label [Hi! I am the Turtle.]
setpos [-100 30]
label [Let's draw a picture.]
setpos [-100 10] ht
label [Type GO when you are ready.]
end

to doodle
cc
name readchar "key
if :key "f [print "f forward]
if :key "b [print "b back 10]
if ~key "1 [print "1 left 15]
if :key "r [print "r right 15]
if :key "e [pe]
if :key "u [pu]
if :key "d [pd]
if :key 5 [setc 5 fill setc 1]
if :key = 4 [setc 4 fill setc 1]

if :key
if :key
if :key
doodle
end

to go
cg
ct
pd
seth 0
st
doodle
end

etc.

"x [save]
"q [ct cg doodle]
"p [printout stopall]

(For printout programs, see Part 1 of this article in
the Winter 1991 issue of Logo Exchange.)

hltt LoGoExcHANGE

to save
cc
(type [Are you ready to SAVE this?]

char 13)
type char 13
(type [Y or N?] char 32)
name readlistcc "okay
ifelse :okay = [n] [rerun]

[save.this stop]
end

to rerun
cc
type [O.K. You can draw again.]
doodle
end

to save.this
cc
(type [Put your disk in now.]
char 13)
(type [Then name this page.]
char 13)
type char 13
make "answer first readlistcc
cleanup
np :answer
cc
(type [Put the other disk back in

now.] char 13)
type [Then press RETURN.]
make "answer readchar
getpage "startup

Note: My disk is always too full for getpage
ustartup. If you have that problem too, use
leavepage here instead.

end

to cleanup
if front? [flip]
top
search "to\ startup
if not found? [flip stop]
top
select
search "end
unselect
select
top
cut
top
search "to\ go
unselect
cf
select

Spring 1992

I

cd
cd
cd
cut
print "bottom
flip
end

This is the single-key program as my class uses it. The
save program is written to match these commands.
Both can be adjusted to whatever your preset limits are.

Thanks to Michael Tempel of LCSI for adding
the select/ cut procedures to automatically
eliminate the startup parts of the drawing pro
gram. After hours of frustration alone, I finally
followed the advice we give the kids and asked

for help from someone who knew more.
Thanks, Michael.

Judi Menken has taught primary-grade chil
dren for 14 years, the last 10 at a small, alterna
tive public school in the middle of Manhattan.
SheusesLogowithinanintegratedcurriculum
classroom filled with guinea pigs, books, paint,
pencils, and (oh yeah) computers. It can be
done!

Judi Menken
Midtown West

328 W. 48th Street
New York, NY 10036

212/247-0208

Logo Writer
Activities

• Twenty-five scrapbook disks with easy-to-follow
student directions and teacher notes

for Readers

···-
s ~

• Supports whole language, writing process,
and traditional approaches to instruction

• Works in conjunction with Logo Writer 2.0 or higher

• Apple lie, MSDOS, and Macintosh versions

• Single classroom version- $99.50
Build reading and writing
skills In grades 1 through 6 • Building and district licenses based on population

Call for sample disks: 201 • 703·9676
... · F--~ -~ 1 1· · b . .4 ttL- f ,_ t Fluffy is a happy c:al who loves to piOI,j in the flower
• .., ,_. 15, ,..., 1ue 1 n a 1 g 1o:1 a ... _,.. o 111:1 s v-H • · f 1Jo 1 (lh b ·

garden. H1s favor1te ga~~~e IS h1d1ng rom , e 19
Ue haw lots of 't 'tin the varctla'ld a uenJ lcrge oak 'that dog next door. Solleli~~~es •hen I walk by, he jumps

. ..U t __._ _ and out Clld !J"abS IIY foot. That sc:c:res me for a second
1 low to ~l11b. 1\J rau.- takes a "" o -~ ,._.,....,. 1111 1 love fluffy.

110ther has UW Q. m sha ~an criue Ill! lo schoal. I have a 1/#

~~~~--c~--~-~-.-~~-.----------------------,1~ ~ 
LogoWrtter II a regllhHed tlademark of Logo C~puler Systems. Inc. 

Compuco,lnc. • 26-05 D Fair Lawn Avenue • Fair Lawn, NJ. 07410 • 201 703-9676 

Volume 10 Number 3 LoGoExcHANGE ttttt 27 



Hypermedia Links With Logo 

Q The microworld, suggested by Seymour Papert, 
0) was an early and popular idea in Logo. A microworld 
0 is a small, self-contained universe that the learner can 

...J explore. The evolution of hypermedia has made it 
C: easier than ever to create such worlds. Two elements 
Q are required for hypermedia explorations: 

~ 
.g 
.c: 
~ 

28 

1. a construct or metaphor, such as pages in a book 
or index cards in a stack of cards, that can be 
used as building blocks in the microworld' s 
construction 

2. some means of providing links among these 
elements. 

Logo Writer uses the concept of pages in a book as its 
underlying metaphor, while HyperCard uses the con
cept of index cards in a stack of cards: 

DO 
Pages in a Book 

(LogoWriter) 
A Stack of Cards 

(HyperCard) 

Metaphors for a Hypennedia Environment 

The developer of a micro world might create a different 
room on each card in a stack or on each page of a book. 
In this type of microworld, hypermedia links provide a 
way to move from room to room. 

Of course, the different kinds of universes that 
micro world developers can construct are as limitless as 
the imagination of the creators. A solar system could be 
created on the first page of a Logo Writer book, and 
subsequent pages could be devoted to each planet, with 
one page on Mars, one page on Jupiter, and so forth. 
When students develop such micro worlds, they learn a 
great deal about the content which they are studying. 
The process of creating a page on Jupiter may require a 
trip to the library to find out more about this giant 
planet. 

Hypermedia Buttons 
Development of a hypermedia application requires 

some method for linking the elements of the world 

hitt LoooExcHANGE 

by Glen L. Bull and Gina L. Bull 

constructed. It should be possible to go directly to the 
Logo Writer page describing Jupiter without going 
through the pages on Mercury, Mars, Earth, etc. first . 
TheGetPagecommandinl.ogoWriterprovidesawayof 
going to directly to any page in the book: 

GetPage "Jupiter 

Another hypermedia technique involves creation of 
buttons for linking elements together. For example, in 
HyperCard it is possible to create a button that, when 
pressed, takes the user to the page with Jupiter: 

A useful variation of a visible button such as the one 
above is an invisible button that can be placed over an 
object of interest. For example, an invisible button 
placed over a picture of Mars might take the user to a 
screen containing information about the red planet. 

Creating Buttons Within Logo 
In the early 1980s an experimental version of Logo 

had the capacity for buttons, but thus far no commer
cially released version of Logo has had this feature. 
However, in the April, 1984, issue of Logo Exchange we 
described a technique that can be adapted to create 
hypermedia links in Logo similar to those produced 
with buttons in other applications. 

The method depends upon creating an invisible 
grid across the Logo screen. Each block in the grid is 
numbered; a Logo procedure called BLOCK? can tell us 
where the turtle is at any point in time. If the block the 
turtle occupies is over an object of interest, appropriate 
action may be taken just as though it were an invisible 
button 

0 1 2 3 4 5 6 7 8 9 
10 11 12 13 14 15 16 17 18 19 
20 21 22 23 24 25 26 27 28 29 
30 31 32 33 34 35 36 37 38 39 
40 41 42 43 44 45 46 47 48 49 
50 51 52 53 54 55 56 57 58 59 
60 61 62 63 64 65 66 67 68 69 
70 71 72 73 74 75 76 77 78 7Q 
80 81 82 83 84 85 86 87 88 89 
90 91 92 93 94 95 96 97 98 99 

Spring 1992 

,,_,, ,. ·-··--··-----~------------· 



The following setup procedure establishes the grid's 
basic coordinates. You will need to substitute the num
ber of turtle steps across the width and height of your 
screen, depending upon whether you are using an 
Apple, IBM, or Macintosh computer. When we first 
developed the technique eight years ago, we were 
using an Apple II computer with Terrapin Logo. More 
recently we adapted the procedure for Logo Writer on 
Apple, IBM, and Macintosh computers as well. 

TO SETUP 
MAKE "SCREEN. WIDTH 2 8 0 
MAKE "SCREEN.HEIGHT 180 
MAKE "NO.OF.ROWS 10 
MAKE "NO.OF.COLS 10 
MAKE "BLOCK.WIDTH :SCREEN.WIDTH I 

:NO.OF.ROWS 
MAKE "BLOCK.HEIGHT :SCREEN.HEIGHT I 

:NO.OF.COLS 
MAKE "X.OFFSET (:SCREEN.WIDTH I 2) 

- 1 
MAKE "Y.OFFSET (:SCREEN.HEIGHT I 2) 

- 1 
END 

The technique should work for any computer, but you 
will need to change the numbers for the variables 
SCREEN.WIDTH and SCREEN.HEIGHT so that they 
match the numbers needed by the computer you are 
using. If you are not sure of the number of pixels across 
your screen, you can move the turtle to the edge of the 
screen and print its location with the command PRINT 
XCOR. This will provide the turtle's X-coordinate. By 
doubling this number, you will have the width of the 
screen. You can use the YCOR command in a similar 
way to obtain the Y -coordinates that will provide the 
height of the screen. 

-140 +140 

The values we obtained in our measurements for the 
width (X-axis) and height (Y -axis) of the screens of 
different computers using Logo Writer were: 

Apple 
IBM 

Macintosh 

Volume 10 Number 3 

Width 
280 
320 
495 

Height 
180 
190 
221 

After you have run the SETUP procedure, the BLOCK? 
procedure will tell which block the turtle is on at any 
given time. (Troubleshooting tip: be sure that there is 
no space between the colon and the variable name in 
variables such as :X and :Y; however, there should be a 
space between variables. Users who are using Version 1 
of Logo Writer rather than Version 2 should consult the 
note at the end of this article.) 

TO BLOCK? 
MAKE "X INT (XCOR + :X.OFFSET) I 

:BLOCK. WIDTH 
MAKE "Y INT (YCOR + :Y.OFFSET) I 

:BLOCK.HEIGHT 
MAKE "Y (:NO.OF.ROWS - 1) - :Y 
OUTPUT WORD :X :Y 
END 

For example, if the turtle is in the column labeled 
"2" and the row labeled "3", as shown below, the 
command PRINT BLOCK? would return a result of 
"23". Before running the BLOCK? procedure for the 
first time, it is necessary to run the SETUP procedure 
described above. 

0 

SETUP 
PRINT BLOCK? 
23 

0 2 3 4 5 6 7 8 

~--~-+--~--~--+--4---+---+--+--
1 
2~--r--+---r--;---+--;---+---+--+--~ 

3 .. 
4~~~-r~~--~--+-~---r--~--+-~ 

5~~~-r--4---4---+-~--~--~--+-~ 
6 
7~~~-r--~--~--+-~--~--~--+-~ 

8 
9~~~-+--~--~--+-~---+--~--+-~ 

Each block can act as an invisible button. It will be 
necessary to name the buttons we are going to use. For 
example, on the following grid, Mercury lies within 
block 08, and Mars lies within block 25. Some objects 
may cover more than one block; for example, Neptune 
lies within blocks 86 and 87. In that case, both blocks 
should be named "Neptune" in the NAME.BUTIONS 
procedure: 

TO NAME. BUTTONS 
MAKE "08 "Mercury 
MAKE "25 "Mars 
MAKE "86 "Neptune 
MAKE "87 "Neptune 
END 

LOGOEXCHANGE ht tt 29 

-



30 

There are a couple of ways to discover the block asso
ciated with an object. One method is simply to move the 
turtle to the object in question, and then type PRINT 
BLOCK?. The BLOCK? command will then print the 
number of the block the turtle (and the object) are 
occupying. We will also supply a DRAW.GRID proce
dure in the "Useful Tools" section that follows. This 
procedure can be used to draw an overlay of the grid on 
the Logo screen for planning purposes. 

Each button must have an accompanying procedure 
that tells Logo what to do when the button is clicked. 
The procedure may simply print a message on the 
screen. If you are using Logo Writer, the procedure can 
also transfer the user to another screen. In the following 
example, clicking one of the buttons covering Neptune 
will take the user to another Logo Writer page with more 
information about that planet: 

TO MERCURY 
PRINT [Mercury is the planet closest 

to the sun.] 
END 

TO MARS 
PRINT [Mars is known as the "red 

planet."] 
END 

TO NEPTUNE 
GETPAGE "NEPTUNE 
END 

The CLICK.BUTION procedure provides a way to 
click the buttons covering the objects on the Logo 
screen. The CLICK. BUTTON procedure checks to see if 
the block which the turtle is occupying has been given 
a name. If it has, the CLICK.BUTTON command runs 
the procedure associated with that block. For example, 
Block 25 was assigned the name of "Mars" in the 
NAME.BUTTONS procedure. Therefore, when the 
turtle has been moved to Mars and CLICK. BUTTON is 
typed, the MARS procedure will print "Mars is known 

hltt LoGoExcHANGE 

as the 'red planet.'" It is important to observe the 
difference between brackets and parentheses when 
enteringtheCLICK.BUTION procedure. In the follow
ing procedure, brackets are the outermost symbols 
with square corners, while the parentheses within the 
brackets have rounded comers: 

TO CLICK.BUTTON 
IF NAME? BLOCK? [RUN (LIST THING 

BLOCK?)] 
END 

You will need to run the NAME.BUTTONS procedure 
before trying the CLICK.BUTTON command for the 
first time. If you name more buttons associated other 
objects at a later date, it will be necessary to run the 
NAME.BUTTONS procedure again to activate these 
new buttons: 

NAME.BUTTONS 
CLICK.BUTTON 
Mars is known as the "red planet." 

Useful Tools 
The numbered blocks covering the Logo screen are 

usually on an invisible grid. However, when you are 
designing a page it may be helpful to draw the actual 
grid lines on the screen. The DRAW.GRID procedure 
draws the grid lines. It uses two subprocedures, LINE 
and OVER. It is necessary to run the previously de
scribedSETUPprocedurebeforerunningDRAW.GRID. 
(Troubleshooting Tip: Be sure there is no space between 
the minus sign and the number 2 in -2 below.lf you are 
using LogoWriter Version 1 of rather than Logo Writer 
Version 2, you can omit the ROUND command in the 
DRAW.GRID procedure.) 

TO DRAW. GRID 
PU 
HOME 
OVER ROUND (:SCREEN.WIDTH I -2) 
BACK :SCREEN.HEIGHT I -2 
PD 
REPEAT 10 [LINE :SCREEN.HEIGHT OVER 

:BLOCK.WIDTH] 
FORWARD :SCREEN.HEIGHT 
RIGHT 90 
REPEAT 10 [LINE :SCREEN.WIDTH OVER 

:BLOCK.HEIGHT] 
END 

TO LINE :LENGTH 
FORWARD :LENGTH 
BACK :LENGTH 
END 

Spring 1992 



TO OVER :DISTANCE 
PU 
RIGHT 90 
FORWARD :DISTANCE 
PD 
LEFT 90 
END 

The grid can be removed by setting the pen color of the 
turtle to 0 (white) instead of 1 (black), and running the 
DRAW.GRID procedure again: 

TO REMOVE. GRID 
SETC 0 
DRAW.GRID 
SETC 1 
END 

Enhancements 
This column describes a way to create invisible 

buttons covering various objects on the Logo screen. 
When the turtle is moved to the object, either by using 
the traditional turtle commands (FD, RT, etc.) or by 
using the Logo Writer "Turtle Move" keys, the com
mand CLICK.BUTI'ON activates the button. To use the 
"Turtle Move" keys, type Open Apple-9 in Apple 
Logo Writer or press Function Key 9-the key labeled 
F9-in IBM Logo Writer You can then use the Up Arrow 
and Down Arrow keys to move the turtle around the 
screen. Press the Escape key to return to the previous 
mode after the turtle has been moved to the desired 
position. 

This basic framework can be enhanced by provid
ing other ways to activate the CLICK.BUTTON com
mand. The Logo Writer command WHEN (available in 
LogoWriter Version 2) provides one means of accom
plishing this. The WHEN command programs a Con
trol-key event. After the following line is entered, 
holding down the Control key and pressing the letter 
"x" will cause the CLICK.BUTION procedure to be 
activated. 

WHEN "x [CLICK.BUTTON] 

This command will make it possible to move the turtle 
to any object on the screen covered by a button, and 
type Control-X to activate the button. 

In the Madntosh version of LogoWriter, it is pos
sible to use the Macintosh mouse to move the turtle 
around the screen. The Macintosh version of Logo Writer 
also provides a way to check whether the mouse button 
has been pressed (with the BUTTON? command). An 
additional enhancement, which we will leave as an 
exercise for readers with Macintoshes, would be to 
develop a way to activate Logo buttons with a click of 

Volume 10 Number 3 

the mouse button. Readers who have Apple or IBM 
computers with joysticks may wish to explore whether 
they can discover a way to activate Logo buttons with 
a click of the joystick buttons. (On those machines, the 
commands 

Button? 0 

and 

Button? 1 

report "True" or "False" depending on whether joy
stick buttons "0" or "1" are being depressed.) 

It is important to run the SETUP and 
NAME.BUTI'ON procedures (which set up the invis
ible grid and name all of the Logo buttons that have 
been assigned in the grid) before running BLOCK? or 
CUCK.BUTI'ON. A STARTUP procedure will ensure 
that these procedures are run when the user first enters 
the Logo Writer page. If a Control-key event is defined so 
that Logo screen buttons can be activated with a Con
trol-X, this command should be included in the 
STARTUP procedure as well: 

TO STARTUP 
SETUP 
NAME.BUTTONS 
WHEN "x [CLICK.BUTTON] 
END 

Summary 
A number of hypermedia applications provide 

users with a means of controlling events through in vis
ible buttons placed over objects on the screen. The 
SETUP, NAME. BUTTONS, and CLICK. BUTTON pro
cedures provide Logo users with a method for creating 
similar hypermedia buttons within Logo. 

When a button created in this manner is clicked, 
either by typing CLICK.BUTTON and pressing the 
Return key or by typing Controi-X, the screen button at 
the location of the turtle is activated. The hypermedia 
event that occurs when a button is clicked depends 
upon the commands the developer places in a Logo 
procedure associated with the button. A message may 
be printed on the screen, a series of turtle commands 
may move the turtle to a different location on the 
screen, or the user may be transferred to another page. 

The microworlds created with such hypermedia 
tools can be as varied as the creator's imagination. For 
example, one group of students visiting the geology 
corner of a science museum created a geology 
microworld. Screen buttons were linked to geologic 
samples on the Logo screen. Placing the turtle over a 
geologic sample and activating the button caused an-

LOGOEXCHANGE tJrl 31 



other screen with more information about the underly
ing mineral to appear. 

A school directory is another project that could be 
developed through a hypermedia format. The floor 
plan of the school would appear on the first Logo Writer 
page. The turtle could be used to move from room to 
room. Clicking the underlying button in any room 
would take the user to another page with additional 
information about that area. 

The underlying focus of any such project should be 
the knowledge the learner acquires in the process of 
creating the microworld. Educators who do not share 
the Logo philosophy and approach to learning might 
be tempted to spend hours creating a fully formed 
"GeoWorld" microworld for a class. In reality, a class is 
likely to learn more by going through the process of 
creating a micro world themselves and developing the 
knowledge that goes into the process than by using a 
template the teacher has created. · 

Additional Procedures for Logo Writer Version 1 
Users 

If you are using Logo Writer Version 1 rather than 
Logo Writer Version 2, you will also need to enter the 
following procedures since they are not built-in report
ers (primitives) in Version 1: 

TO INT :NUMBER 
IF :NUMBER < 1 [OUTPUT 0] 
OUTPUT FIRST :NUMBER 
END 

TO XCOR 
OUTPUT FIRST POS 
END 

TO YCOR 
OUTPUT LAST POS 
END 

Glen Bull is an associate professor in the Instruc
tional Technology Program of the Curry School 
of Education at the UniversityofVirginia. Gina 
Bull is a system administrator in the Depart
ment of Computer Science at the University of 
Virginia. Bydaysheworksina UNIX environ
ment, by night in a Logo environment. 

Internet Addresses: GBull@Virginia.edu, 
Gina@Virginia.edu 

BITNET Addresses: GBull@Virginia, 
Gina@Virginia 

NEW Terrapin Logo for Mac UPGRADE! 
Now you can upgrade to new Version 1.2 of Terrapin Logo for Macintosh. 
With it, you'll get: 

• Cutting & Pasting of Logo graphics to clipboard, scrapbook or windows 
• Automatic window refresh when windows overlap 
• Print more easily using menu options 
• Runs under MultiFinder 
• 20 useful Logo tools 
• Runs on an AppleShare or MacJanet network with Site License version 

For complete information on the new features and tools in Terrapin's Logo for 
Macintosh upgrade, write or call. You'll get our usual helpful, friendly support. 

How to upgrade: Send your old Terrapin Logo/Mac disk with $25 for the first disk and 
$7.50 for each additional disk returned to be upgraded. Site licenses can be upgraded by 
sending us a P.O. for $100 noting your site license number. 

~-Terrapin Software, Inc. 0 400 Riverside Street 0 Portland, ME 04103 
207-878-8200 0 Fax: 207-797-9235 

32 hltt LoGoExcHANGE 
Spring 1992 



... a conversation with Uri Leron .... 

Uri Leron dropped by to visit me in Montreal this 
summer as he was returning to Israel after spending 
another summer at the Institute for Mathematics and 
Computer Science Education (IFSMACSE) atKentState 
University. I knew that this was the second year he had 
participated in this Institute so I was curious to find out 
exactly who the Institute was for, how it operated, and 
what made it unique. After all, when the likes of Uri 
Leron,BrianHarvey,RinaZazkis,AlCuoco,PhilLewis, 
and Paul Goldenberg congregate for six weeks during 
the summer to do mathematics and computer science 
Logo style, it has got to imply that something signifi
cant is happening. The Institute was originally con
ceived of and organized by Ed Dubinsky of Purdue 
University, and Olaf Stackelberg of Kent State Univer
sity, where the Institute is actually held. They began 
planning for the Institute in 1986. As described by Brian 
Harvey in a paper submitted to NECC '92, IFSMACSE 
was designed to foster new sophistication in the curricu
lum, new methods of teaching, and new uses of technology 
(Harvey, 1992). 

The participants each summer are approximately 
180 high school mathematics and computer science 
teachers, predominantly from Ohio and the surround
ing states, half of whom attended the program the 
previous summer and half of whom are attending for 
the first time. Participants receive room and board plus 
about $300 per week. As Harvey (1992) describes it: 

They are divided into mathematics and com
puter science strands. During the first two 
years of IFSMACSE classes, there were two 
math strands, one focusing on new topics in 
mathematics, and the other on the use of com
puter technology in learning math. These were 
merged for the third year, starting in 1991, by 
combining courses from the two curricula. 

The NSF-funded program just completed its third 
summer of operation. During the summer of 1991 Brian 
Harvey and Paul Goldenberg taught in the computer 
science strand, Rina Zazkis, AI Cuoco, and Phil Lewis 
taught in the computer and mathematics strand, and 
Uri Leron taught the second-year students in the pure 
mathematics strand. (The previous year he had taught 
the computer science strand with Brian Harvey.) Using 
the ISETL computer language,. Uri taught abstract 

Volume 10 Number 3 

by A. J. (Sandy) Dawson 

algebra to these second-time students The key to what 
Uri saw as different about this way of teaching abstract 
algebra as compared to what he had done in the past, or 
what is normally done in university level mathematics 
courses, was in the way ISETL programming activities 
and small-group discussions were utilized to replace 
the traditional lecture method. Here is what he told me 
about his method (which he is developing jointly with 
Ed Dubinsky). 

Uri: ISETL, which stands for Interactive SET Language, 
is not quite like other programming languages. It 
was invented and designed quite a few years ago by 
a well-known mathematician, J. T. Schwartz of the 
New York University's Courant Institute. (More 
precisely, Schwartz, designed an earlier version, 
called SETL, which was very powerful but ran only 
on mainframe computers and required compila
tion. Ed Dubinsky and Gary Levin designed the 
present, interactive version for microcomputers.) 
He did this not for any educational reasons. As a 
mathematician he wanted a computer language in 
which he could program more or less the way he 
thinks about mathematics. So his idea was to take 
the standard language of written mathematics and 
introduce the absolute minimal changes necessary 
to make it into something the computer could ex
ecute. It wasn't easy. In fact, it took him several years 
until he found someone who was able to implement 
it. So when you look at ISETL programs, it is almost 
like viewing any mathematics done with paper and 
pencil. If you are a mathematician, you can read and 
understand the program without knowing the pro
gramming language. One result of this is that to 
learn the language is almost like learning to write 
down mathematics. So students don't have to waste 
a lot of time learning computer garbage. Most of the 
things they have to learn are purely mathematical; 
very little time is spent on learning the language per 
se. Of the six weeks in Ohio, we spent only the first 
week on the language, but even during the first 
week, the students were already doing mathematics 
as they were learning the language. They were 
already writing down mathematical things like 
modular numbers and functions and the operations 
on these things. So even as they were learning the 
language, they were reviewing and in fact learning 
new mathematics. 

LoooExcHANGE hltt 33 



34 

Sandy: Would you describe one of these activities? I 
can't get a mental picture what one might look like. 

Uri: Well, the activities normally would proceed from 
concrete to abstract and they were geared to teach
ing the important notions of abstract algebra, say, 
group theory. In the beginning we would start by 
writing the code, which is almost the same as a 
mathematical code, on the computer (in the ISETL 
language, of course), constructing some concrete 
examples of mathematical groups before actually 
talking about groups. All the time there is a general 
ongoing discussion. Students work in small groups, 
two or three or four in a group, and they are always 
supposed to talk. They actually talk about whatthey 
are doing, trying to guess how the computer will 
react to whatever was typed into it. The rules of the 
game prescribe that they always try to guess before 
they hit Return, writing down their guesses in their 
notebooks and then comparing this with the result 
from the computer. And actually this is the attitude 
we have: If you guess correctly then you didn't learn 
anything new, so it was just a waste of your time; but if 
you didn't guess correctly then you are lucky, because you 
have something to learn from this activity. So that's how 
we would work. Students start learning about the 
role of their classroom community, their own role in 
it, and the role of the computer. We want them to 
write mathematical code, but the difference is that 
when they write mathematical code in ISETL in
stead of with a pencil on paper, they can interact 
with-they can ask the computer to find what this 
identity element is, for example. The computer actu
ally tells them whether or not there is one. And by 
playing with this code, the assumption is that the 
students not only make constructions on the 
computer,but that they also construct mathematical 
objects and processes in their mind. And this is 
really important: For these mental constructions to 
happen, students should do the programming themselves 
rather than. use any kind of prepackaged programs or 
software J'XlCkage. 

Sandy: Earlier you mentioned that you believed stu
dents didn't learn abstract algebra when they origi
nally took it as undergraduate students because of 
the way they were taught: the lecture method, doing 
exercises, and things like that. But how are the 
exercises you have developed different from what a 
student might have done years ago? Then they 
listened to a lecture and were given a set of exercises 
to do. They did those exercises and checked the back 
of the book to see if they had the correct result. How 
is that any different from what you are doing with 
ISETL, where students type things into the com-

hltt LOGOEXCHANGE 

puter, and if it is what the computer wants, that's 
fine, they go on into the next thing, and if it is not 
what the computer wants they go back and do 
something different? 

Uri: Nasty question! It is different both because of the 
discussions that occur and the computer activities 
we have developed. To begin with, the students 
don't have the concept-they don't have the con
cept in their mind. They don't need to understand 
the stuff initially in order to do the computer activi
ties; the computer activities can be done with partial 
understanding or with no understanding. And that 
understanding sort of emerges through the interac
tion with the activities using the computer. They 
start by typing something into the computer; in 
many cases they have no idea what the thing is 
supposed to be. In some cases they have a vague 
idea, but because this is a computer activity they can 
work with partial understanding. They can always 
do something. And by guessing what the results 
would be and comparing this with the computer the 
students gradually develop understanding. So each 
time they do an activity, they supposedly under
stand a little bit better the stuff they are working 
with, and all the time they are doing these activities, 
they are discussing it with their classmates. It really 
is quite different. You just have to go around and 
listen to these discussions. It is wonderful because 
they just talk about the kinds of notions you always 
wanted students to talk about but never really did. 
Here they are talking about this, more or less con
tinuously arguing aboutthese very notions. You can 
see that the students operate on a totally different 
level. It is wonderful when it comes out of them; it 
really shows you that they are thinking hard about 
what they are doing. I don't know how to elicit this 
kind of learning without the computer activities. 

Sandy: So is one of the things you're after a different 
way of working in mathematics classrooms in uni
versity settings? 

Uri: Yes, and we also think that this kind of work could 
go on in high school math classes. We don't yet have 
a lot of experience in high schools. All the work we 
have done so far was in university courses, but we're 
going to try it out very soon in high schools. And 
some of the successes were with college classes 
where the average talent was no higher than what 
you expect to find in high schools, so this makes us 
optimistic about what we can achieve at the high 
school level. 

Spring 1992 



Sandy: I have a second nasty question! One of the 
things that was said about bringing computers into 
the teaching of mathematics is that we would in fact 
do mathematics in different ways, and the math
ematics we created would be different. It seems to 
me from what you said thatiSETL, in fact, doesn't do 
that It's the same old mathematics. It is, in fact, 
directing students to do mathematics in the way it 
has always been done, using the terminology we 
have had for the last half century. But it doesn't 
allow for new mathematics to be created because it 
is training students to write and think about math
ematics in the same way that has been around for 
years. 

Uri: Isn't this the kind of question that Papert would 
describe as technocentric? I said ISETL is a tool, a tool 
that is appropriate and effective for dealing with 
some mathematical topics. It doesn't prescribe to 
you a particular way of doing mathematics or what 
kind of mathematics should be done. Take group 
theory, for example. It is a beautiful piece of math
ematics, and we don't need to change that. But only 
very few students come to appreciate its beauty or 
make any intellectual use of it, and this is what we 
are trying to change. I think it is very important to 
distinguish between what's happening in the learn
ing process, which is all about intuition and per
sonal meaning and exploration, and the later stages 
when students come to connect with the general 
culture of mathematics, what I call the official math
ematics. Now the meaning is personal, we try to 
reconstruct the whole meaning in our own ways. 
Part of the success of mathematics is that even 
though everybody constructs their own meanings, 
people can meaningfully discuss mathematics and 
more or less agree about what they are saying. 
Presumably you will have your own meaning of 
what I said, but we can still connect, communicate, 
and come to some kind of agreement about what we 
are talking about. This is a kind of meaning which 
is ... 

Sandy: ... social? Are you saying that there is a social 
aspect of what is acceptable, even within the math
ematics community itself? You are suggesting, I 
gather, that you want the highschool teachers in this 
program to go back to their high school students and 
teach that flavor of mathematics. 

Uri: For me the most important thing is that the stu
dents will have a meaningful experience. Our hope 
is-and experience tends to support this, at least 
partially-that with these new methods of working 
with the computer, doing the construction of con-

Volume 10 Number 3 

cepts with them, through the discussions, the stu
dents can, in a meaningful way, learn the mathemat
ics. I think if we can manage to do this in a meaning
ful way, people wouldn't object to whatever math
ematics is chosen for study, whatever is correct and 
interesting in the sense of the general culture of 
mathematics. 

Sandy: Caleb Gattegno (1974) claims that only aware
ness is educable. Moreover, he said that awareness 
could be forced. What he meant by forcing aware
ness was that particular situations and activities, 
when presented to students, increase the likelihood 
that students are going to become aware of the 
mathematics being presented to them. Of course, 
there is no guarantee that this will happen. How 
does one know the likelihood has been increased? 
Experience tells you. You have done this before and 
you find that students get it if they do this, and they 
don't get it if they don't do this sort of thing. 

Uri: This is exactly what I was trying to say. 

On that note I had to drive Uri to the airport for his 
flight to Europe, and our conversation ended. How
ever, during a break from editing the tapes of our 
conversation for this column, I spent a couple of hours 
talking with Benoit Cote at the Universite de Quebec 'a 
Montreal about his software package called Les Deux 
Tortues (Cote, sous presse). I was pleased to see that 
Benoit had put into his package, designed for upper 
elementary school-aged children and based on a Logo
like approach to the teaching of mathematics, many of 
the same things Uri was talking about for his class of 
high school teachers. Both Benoit and Uri want the 
learners with whom they work to do mathematics, to 
discuss mathematics, and to do so with the assistance of 
a computer. But neither wants the computer language 
to become the focus of the activity. A similar approach 
can be found with Cabri-geom'Etre, the geometry soft
ware package coming out of France (Baulac, Bellemain, 
& Laborde, 1989). In all three approaches, the focus is 
on learners exploring and mathematizing, and not on 
learning a computer language. They are tools that are 
appropriate and effective for dealing with some math
ematical topics, as Uri noted above concerning ISETL. 

As such I think all three approaches are on the right 
track. 

References 
Baxter, N., Dubinsky, E., & Levin, G. (1989). Learning 

discrete mathematics withiSETL. New York: Springer
Verlag. 

Baulac, Y ., Bellemain, F., & Laborde, J .-M. (1989). Carbi-

LoGoExcHANGE 35 



36 

giom'etre: An interactive notebook to tetJCh and learn 
geometry. Laboratory LSD2 (IMAG-UJF-CNRS), 
BP53X 38041, Grenoble, France. 

COte, B. (sous presse). Les deux tortues: Un ensemble 
d' actiuitis mathematiques pour lesecond cycle du primaire 
et lepremiercycledusecondllire. Montreal, QC: Machina 
Sapiens, 5780 Decelles A venue, Montreal, QC, 
Canada. 

Leron, U., & Dubinsky, E. (in press). Learning abstract 
algebra with ISET. New York: Springer-Verlag. 

Gattegno, C. (1974). The common sense of teaching math
ematics. New York: Educational Solutions Inc. 

Harvey, B. (1992). Beyond programming: A two-summer 
computerscienceinstituteforsecondaryteachers. Manu
script submitted to the National Educational Com
puting Conference. 

Uri Leron is an associate professor at the Israel 
Institute of Technology (Technion),· Depart
ment of Science Education, Haifa 32000, Israel. 
He is the author of many articles about Logo 
and mathematics education, perhaps the two 
most well-known ones being ''Logo Today: 
Vision and Reality," which appeared in 1985 in 
TheComputingTeacher[12(5),26-32],and "Struc-

~ 

turing Mathematical Proofs," which appeared 
in the American Mathematical Monthly in 1983. 
Uri Leron's email address is: 
ttr0128@technion.bitnet. 

Sandy Dawson has now returned to his duties 
as director of the Professional Development 
Program at Simon Fraser University in 
Vancouver, Canada. At the time of the prepa
ration of this column, he was a guest of the 
Department of Mathematics and Statistics at 
Concordia University in Montreal, Canada. 
Sandy wishes to thank the department, and in 
particular Dr. Joel Hillel, for the hospitality 
shown him during his stay in Montreal. 

A. J. (Sandy) Dawson 
Faculty of Education 

Simon Fraser University 
Vancouver, BC 

Canada V5A 156 

Email address: 
Userdaws@sfu.bitnet 

Making Tracks 

ttttt LOGOEXCHANGE 

After a few hours with 
George Beekman's book, even novice 

computer users will be able to design, build, and 
customize visually impressive and conceptually complex 

stacks to perform a variety of tasks. 

HyperCard In A Hurry systematically presents the fundamentals of HyperCarctFJ 
through a series of self-study, hands-on sessions. The first two sessions 
introduce HyperCard as a tool for information storage and retrieval. The four 
remaining sessions illustrate essential techniques and tricks for building a variety 
of HyperCard stacks. ' 

Available as HyperCard In A Hurry, version 1.0 or HyperCard In a Hurry 2, 
version 2.0. $18.95 plus $4.50 shipping. Canadian orders add 7% GST (Registra
tion # 128828431 ). 

International Society for Technology in Education 
1787 Agate Street, Eugene, OR 97403-1923 
Phone: 503/346-4414 Fax: 503/346-5890 
Bitnet: ISTE®Oregon CompuServe: 70014,2117 
ISTE.Net (GTE): ISTE.office 



Escher's Potato Stamps: 
A Microworld Programming Project 

by Y. S. Give' on, Nitsa Movshovitz-Hadar, Rina Hadass 

fl) Escher's Game of Potato Stamps 
't: In developing the activities described below, we 
Q,) were inspired by a specific game created in 1942 by M. 
Q.. C. Escher. The game was based on an ingenious use of 
)( stamps made of engraved potatoes. Escher's son, 

UJ George, described a simplified version of this game as 
a... a way his father used to entertain him in long winter 

J:! evenings. 
Escher's idea was to make use of square potato 

~ stamps with a special structure. Their edges were di
....,. vided into three equal parts by two points, and each one 
~ of these points was connected to another one by a line, 

as shown in Figure 1. 

Figure 1. A sample of squared potato stamps 
made for Escher's design 

The graphic examples were created with LCSI IBM PC 
Logo. The suggested procedures were written in that 
version of Logo, but they can be written, as is, in any 
other version, including Logo Writer, and for any other 
machine. 

When any two such stamps are printed side by 
side, their lines connect through their joined end-points. 
Escher asked his son to forma square tile from four such 
stamps, as illustrated in Figure 2 and then to replicate 
this tile in a rectangular array to get a tessellation 
(Figure3). 

Volume 10Number3 

17 18 
. .... -..... - "'"'J"-"1---.]"·,·· .. r ---· 

-·-.. ......... <:. "'l... .•" __ , .. , ... ~t·-.. , .. _ ... !... ....... ,~: ... 
•' •, 

,..,.... '"" u' '•, 

··... . ... · ····... c-·· 
...... J ... _,_.::..... • • ..J_ ........... . 

5 3 
Figure 2. Four potato stamps attached to form a 

square tile 

5 3 1.7 1.8 

Figure 3. A tessellation made out of the tile in 
Figure2 

The number of different tessellations that can be 
produced in this fashion-using a small number of 
stamps to form tiles-is very large. In general, each 
basic stamp may produce different effects when ro
tated by 90 degrees, 180 degrees, 270 degrees, and 360 
degrees, or when reflected horizontally, vertically, or 
by any of the two diagonals. For example, from 10 
entirely asymmetric stamps, almost 10 million tessella
tions can be created. 

The calculation of this count goes as follows. We 
consider only entirely asymmetric stamps. Therefore, 
each such stamp produces a set of8 different stamps, by 
the four rotations and four reflections. Furthermore, we 
consider 10 stamps, none of which can be transformed 
into another by rotation or reflection. Therefore, these 
10 stamps yield 80 different stamps. Now, in order to 

LoaoExcHA.NGE ttttt 37 



construct a 4-stamp tile, we choose any 4 of these 80 
specific basic elements (80 choose 4 equals 1,581,580). 
We attach the 4 stamps together in 1 of (4!), or 24, 
possible tiles. Some, but not all of the 4! permutations of 
the 4 chosen stamps yield the same (infinite) tessella
tion. In fact, the set of 24 permutations of any such 
chosen stamps can be decomposed into 6 disjoint classes, 
each one containing 4 permutations that are equivalent 
in the sense that they yield identical infinite tessella
tions. Figure 4 shows one such dass of four equivalent 
tiles made of the same 4 stamps. Thus, out of 10 totally 
different and asymmetric stamps, one may generate 
1,581,580 x 24/4, i.e., 9,489,480, different tessellations. 

1.7 18 1.8 .1'7 3 5 5 3 

• <: ~ -- / '\ ./" ... ..· ·· . .,· ._ 83 EE~ ; .. -lj C'rn·--·· . 

' ' 0-C / l .. · . L~L . :f' 7- • .:. v .. ]"'-

3 5 1.8 17 1.7 18 

Figure 4. An example of four equivalent tiles 

Fascinated by the richness of this game, we decided 
to simulate it by a computerized microworld. Logo 
seemed to be a natural language for such a project. It is 
presented here as a programming project for students, 
or for a teacher who may want to use the game as a 
ready-made educational environment. 

The Programming Project 
The proposed core program for Escher's potato

stamps game consists of two sets of procedures. The 
first set contains the specific procedures for the stamps 
themselves. The second contains the procedures for the 
production of the tessellation determined by any choice 
of a sequence of four stamps grouped into a single tile. 

The composition of procedures for the first set, 
which produces stamps, is a worthwhile project by 
itself. It demands the rudiments of Logo programming 
only. As actual classroom experience indicates, this 
maybecomeaverystimulatingproject,especiallywhen 
the students are asked to create and evaluate their own 
designs for the stamps. In order to get there, some 
acquaintance with the effect of the 2 x 2 stamp tile on the 
tessellation is required. By playing with the tiling pro
cedure, students will become gradually aware of the 
structural effects of the stamps in the tile on the overall 
design of the tessellation. Therefore, we suggest that 
the programming of the stamps be done in a special 
environment for hands-on, on-line experience. Such an 
environment can be prepared with a ready set of tiling 
procedures "buried" in it as tools. 

The composition of the procedures of the second 
set is no less of a challenge. Let TILING be the proce
dure that draws the required tessellation according to 

38 ttltt LOGOEXCHANGE 

an arbitrary choice of a sequence of four stamps. Since 
Logo is a rich environment for program design, one 
may compose TILING in many ways and in many 
levels of sophistication. Beginning Logo programmers 
who knowonlysimplemethodsofprogrammingwould 
compose TILING in the following bottom-up manner: 
they would choose four formerly defined stamps, say 
STAMP1,STAMP2, ST AMP3, and STAMP4. Then they 
would define NORTH, EAST, SOUTH, and WEST as 
the proper procedures for the appropriate "interfaces" 
between stamps. For example, if the size of each stamp 
is 30x30 turtle steps, the definitions of these interfaces 
can be very simple: 

TO NORTH 
PU 
FORWARD 30 
PD 
END 

TO EAST 
PU 
RIGHT 90 
FORWARD 30 
LEFT 90 
PD 
END 

TO WEST 
PU 
RIGHT 90 
BACK 30 
LEFT 90 
END 

TO SOUTH 
PU 
BACK 30 
PD 
END 

Finally, they would define TILE, say, for the production 
of the four-stamp tile, by: 

TO TILE 
STAMPl 
NORTH 
STAMP3 
EAST 
STAMP4 
SOUTH 
STAMP2 
WEST 
END 

Spring 1992 



Now, TILING, the procedure that applies TILE 
repeatedly in several adjacent rows, can be defined in a 
very straightforward manner. Students who are aware 
of the practical value of total turtle trips (Abelson & 
diSessa, 1981) would program their stamps as total 
trips. Consequently, these interface procedures can be 
standardized, and TILE itself becomes a total trip as 
well. This way of programming is characteristic of 
beginners, because they do not possess the concept of 
high-level programming in which procedures can be 
used as inputs for other procedures. Each time they 
want to use other stamps, or another TILE, they must 
reprogramST AMP1, STAMP2, ST AMP3,and ST AMP4, 
or reprogram TILE, to suit their new choice. 

Advanced students should be able to form TILE as 
a procedure with four variables accepting names of 
procedures of stamps. TILE should then execute the 
named procedures with the needed interfaces between 
them, as in the previous version of TILE. As experience 
in teaching Logo indicates, this idea is not foreign to 
beginning Logo students as well, and it may be sug
gested by such students if they are not stunted by 
limited programming languages. 

The suitability of a programming language for 
educational purposes is measured, inter alia, by the 
ease in which bright ideas can be expressed with it. 
Logo allows one to define procedures (and functions) 
that can accept procedure names as data, and evaluate 
(i.e., execute) them precisely at any moment when 
required. This can be done in Logo by using any of the 
special verbs, such as RUN, REPEAT, IF, 1FT, IFF, and 
CATCH. These verbs need lists for values of some of 
their arguments, and they execute the contents of these 
lists. This unique type of programming is called 
metalinguistic programming, or, in short, 
metaprogramming. It is available in Logo, as in all the 
dialects and progenies of LISP. There are many possible 
ways of defining TILE as a metaprocedure. In fact, this 
particular project is an excellent opportunity for bring
ing about the need for metaprogramming in a natural 
way (Zazkis & Leron, 1990). This is also a good oppor
tunity for explaining the real meaning and operation of 
REPEAT in Logo as a metaprocedure, since it is not 
often taught and explained. 

If the students are not versed in list processing, the 
teacher may offer them the following procedure "bur
ied" in their environment: 

TO EXECUTE :X 
REPEAT 1 SENTENCE :X (] 
END 

This is a very versatile procedure. It accepts words 
and lists and executes their contents. Students should 
familiarize themselves with its effect, and then they 

Volume 10 Number 3 

may use it in a better version of TILE. In this manner, 
with a proper change of TILING, they will have a 
general-purpose tiling procedure. 

Advanced students can be asked to make the in
ventory of available stamps extensible by adding cer
tain transformations that apply to any specific stamp. 
These may be the four rotations (by 90 degrees) and the 
four mirror reflections (by the square symmetry axes). 
The techniques of meta programming are very useful in 
the production of these transformations. 

Students should become aware of the fact that 
Logo allows the modification of its primitives. In some 
versions of Logo this modification can be carried out 
directly by means of COPYDEF instructions. In some 
versions this can be done only after the instruction to 
MAKE thevalueof the special system variable REDEFP 
TRUE. For a start, they may use primitive modification 
in a meta procedure that can operate on a given proce
dure to produce the mirror image of the outcome of the 
original procedure. The idea is to make RT borrow the 
definition of LEFT, and LT the definition of RIGHT, by 
means of COPYDEF, and then to EXECUTE the proce
dure for the original stamp, followed by COPYDEF 
instructions for the restoration of the original meanings 
of RT and LT. Next they will either attempt to program 
all theotherreflectionsdirectlyina similar way, or they 
may discover that one mirror reflection can generate all 
the other reflections by its composition with rotations. 

In one way or another, this programming project 
may function as a trigger for the concrete study of the 
group of these transformations of "the square," as well 
as of other geometrical figures. If this happens, the 
teacher can direct the students to use their procedures 
as a "transformation calculator," as a separate activity, 
in order to examine the outcome of various combina
tions of reflections and rotations. 

The Game as a Microworld 
The complete outcome of this programming project 

can be used as a microworld. Within this microworld, 
students can be asked to carry out two basic tasks. 

1. They can select stamps and use proper commands 
to activate TILING and get a tessellation. 

In this case, they can examine the effects of their selec
tions and investigate various properties of the pro
duced tessellation. For example, they may study the 
effects of figure and background as determined by 
certain features of the generating TILE. They may in
quire as to the effect of symmetric stamps on the overall 
pattern of the tessellation. They also may raise the 
problem of how to characterize the identity of a tessel
lation and what can be the meaning of equivalence of 
tessellations. Actual experience with young students 

LoaoExcHANGE 39 



40 

(10 to 15 years old) shows that these problems come up 
naturally in such an activity. They may enjoy also the 
aesthetic quality of the tessellation. 

2. They can be shown a completed tessellation 
produced by TILING. 

The tessellation can be produced by a predetermined 
choice made by the teacher according to didactical 
considerations. For example, if the teacher plans to 
cover the subject of equivalent tessellations, the discus
sion can be based on a fixed set of four stamps and all 
their permutations. This may be achieved by a 
preprogrammed procedure that produces all the pos
sible tessellations generated by a given set of four 
stamps. The tessellations also can be produced ran
domly by a procedure. The students then can be asked 
to decode the tessellation into its building blocks, i.e., 
any four stamps that could have produced it. 

In order to make this microworld accessible to 
students of different levels of ability and experience, 
more features can be added to it. For example, if the 
previously described tasks seem to be too difficult, we 
may provide students with simple, introductory acti vi
ties. For instance, we may have a feature that enables 
students to view the tessellation together with informa
tion about its structure. Figure 5 shows a suggestion for 
such an interface. 

u 
18 

~ 
9 

~ 
8 

18 18M 9 8 

Figure 5. A tessellation and its basic stamps as 
assistance for decoding the generating tile 

Additional help, such as a procedure that draws 
the grid of the stamps' borders, can be provided in 
order to aid the student's perception. In order to erase 
the grid lines, it is suggested that TILE is modified by 
including in it a SA VEPIC instruction so that the origi
nal tessellation is automatically saved as a picture file. 
This is done so that a procedure for the erasure of the 

hitt LoaoExciiANGE 

grid may be defined as LOADPICing the saved original 
picture. Another helpful device is a procedure that 
draws an "empty tile," namely, a tile of four empty 
squares. This empty tile can be superimposed on the 
tessellation to show the actual tile used for the produc
tion of the tessellation. A more sophisticated feature 
would allow the students to change the position of the 
"empty tile" and move it around. This feature can help 
them search for several possible tiles that may manu
facture a given tessellation. 

On the other end of the difficulty-level range, the 
microworld should include features for the presenta
tion of tessellations without these hints. One of those 
can be a procedure, say, RANDTILE, which randomly 
chooses a foursome of stamps out of a given basic set of 
stamps. Furthermore, we can make RANDTILE oper
ate in WINDOW mode, locating the tessellation at a 
random POSITION. This feature prevents the outlines 
of the total tessellation from providing a hint about the 
chosen stamps. Figure 6 shows an example of a tessel
lation that is constructed and presented in such a man
ner. Decoding its generating basic stamps and tile is 
very difficult indeed. 

Figure 6. A tessellation with no boundary lines 

Finally, one may add a stamp editor for creating 
new stamps and modifying existing stamps. 

Concluding Remarks 
Logo is an excellent flexible, multipurpose and 

authoring system for generating environments of in
vestigativeactivitiesandconstructionisticlearningsuch 
as the environment suggested by Escher's Potato Stamp 
Game. Such environments, generated with Logo, are 
open to "on the spot" changes that can be made by the 
teacher who presents these microworlds to the stu
dents. Needless to say, this presupposes the teacher's 
mastery of Logo programming. 

The micro world outlined in this article can be used 
as an educational tool in many types of activities. It can 
be used as a learning environment by itself, or com-

Spring 1992 



bined with other tools in richer environments. For 
example, the stamps can be reproduced on rectangular 
pieces of cardboard that can be pasted on proper rect
angulartokenstomakeupmanipulatives.Studentscan 
become familiar with the essential ideas of the game by 
using these manipulatives before they attempt to oper
ate the computerized procedures of the microworld 

As our experience with a few students has shown, 
even the simplest activities within this microworld 
stimulate them to ask some very pertinent questions. 
For example, they spontaneously ask about the pos
sible relationship that may hold between the properties 
of the stamps and the properties of the tiling design 
made of them. Under proper teacher guidance and 
intervention, such students are led to the understand
ing of some sophisticated ideas. The playful activities 
with this game of potato stamps are connected to some 
basic concepts of programming, to principles of com
puter usage, and, in particular, to the use of a computer
related environment in the study of complex structures. 
These ideas form the essence of computer science, both 
as an applied science and as an intellectual endeavor. 
We believe this microworld can provide a soft and 
aesthetic introduction to computer enlightenment as 
wcJl as being a tool for mathematical education. 

A version of this microworld is now being empiri
cally investigated for its educational merits. In particu
lar, we are interested in developing its potential use as 
an educational tool for low achievers. The preliminary 
data about the reactions of children to this microworld 
has motivated us in writing this article. 

Recommendations for Further Reading 
DetailsaboutEscher's work, and in particular about 

his idea of using potato stamps to create tessellations, 
can be found in Ernst (1976) and in Coxeter et al. (1986). 
The topic of tessellation itself, or of tiling, is popular in 
Logo projects even for beginners. It is discussed from 
several points of view by Abelson and diSessa (1981), 
Thornburg (1984), Kenney and Bezuszka (1987), and 
Clayson (1988). Brian Harvey's monumental project of 
raising the level of Logo users through and above 
intermediate level is published in Harvey (1985, 1986, 
1987). 

Constructionist learning, particularly Logo as a 
specific environment for such learning, is discussed in 
Solomon (1986) and Schuyten (1989), and in all the 
recent publications on this subject written by the staff of 
Media Laboratory at MIT. 

Some preliminary data about the reactions of chil
dren to this microworld of Escher's stamp game can be 
found in Hadass, Movshovitz-Hadar, and Give'on 
(1990). The development of this microworld and the 
ongoing research on its educational merits have been 
carriedoutwithinProjectMass-Mathics,aprojectdedi-

Volume 10 Number 3 

cated to mathematical education oflow achievers. More 
information about this project may be found in 
Movshovitz-Hadar (1989). 

A thorough analysis of the potential value of envi
ronments in which programs are used as manipulatives 
can be found in Perl (1990). 

Y. S. Give' on 
Beit Berl College, Kfar Saba, 44905, Israel 

Nitsa Movshovitz-Hadar 
Technion, Haifa, 32000, Israel 

Rina Hadass, Oranim 
University of Haifa, Tivon, 36910, Israel 

References 
Abelson, H., & diSessa A. (1981) Turtle geometry: The 

computer as a medium for exploring mathematics. Cam
bridge, MA: M.I.T. Press. 

Clayson, J. (1988) Visual modeling with Logo: A structural 
approach to seeing. Cambridge, MA: M.I.T. Press. 

Coxeter, H. S. M. et al. (1986) M. C. Escher: Art and 
science. Amsterdam: Elsevier Science Publishing Co. 

Ernst, B. (1976). The magic of M.C. Escher. New York: 
Ballantine. 

Hadass, R., Movshovitz-Hadar N., & Give' on Y. (1990) 
The cognitive challenge involved in Escher's potato 
stamps microworld. In Proceedings: 14th PME Con
ference, Vol. II (pp. 243-249). Mexico. 

Harvey, B. (1985). Computer science Logo style, Vol. 1 
:Intermediate programming, Cambridge, MA: M.I.T. 
Press. 

Harvey, B. (1986). Computer science Logo style, Vol. 2: 
Projects, styles,and techniques. Cambridge, MA: M.I.T. 
Press. 

Harvey, B. (1987). Computer science Logo style, Vol. 3: 
Advanced topics. Cambridge, MA: M.I.T. Press. 

Kenney, M.J., & Bezuszka S.J. (1987). Tessellations using 
Logo. Palo Alto, CA: Dale Seymour Publications. 

Movshovi~z-Hadar, N. (1989). Mass-mathics. Jerusalem 
Convention on Education, Jerusalem. 

Perl, T. (1990). Manipulatives and the computer: A 
powerful partnership for learners of all ages. Class
room computer learning, 10,(6). 

Schuyten, G. (1989). Constructivism as a theoretical 
framework for Logo-based environments. In Pro
ceedings of the Second European Logo Conference (pp. 
vii-xxii). Gent, Belgium. 

Solomon, C. (1986). Computer environments for children: 
A reflection on theories of learning and education. Cam
bridge, MA: M.I.T. Press. 

Thornburg, D. D. (1984). Exploring Logo without a com
puter. Menlo Park, CA: Addison-Wesley. 

Zazkis R., & Leron U. (1990). Implementing powerful 
ideas-The case for RUN. Logo Exchange, 8(8), 11-14. 

LoGoExcHANGE 41 



•• 
0 

~ 
...... 

42 

Higher-Level Math Thinking: Part II 

The subtle title indicates that there was indeed a 
Part I to this article-see RHOMBUS MADNESS in the 
Winter, 1991, issue of Logo Exchange. If you haven't yet 
studied that column,l you may wish to do so. We 
presented concrete examples and the researchers' theo
ries. Table 1 provides a brief overview. 

Table 1 
Overview of the Theories 

van Hiele's Levels of Geometric Thinking 

Visual: The student sees figures as "wholes" 
and is unable to analyze their properties. 

Descriptive: The student describes the proper
ties and relations of figures and can use them in 
inductive arguments. 

Skemp 'sWays of Understanding 

Instrumental mathematics: "rules without rea
sons." 

Relational mathematics: "knowing both what 
to do and why." Building up conceptual struc
turesfrom which a student can produce an unlim
ited number of rules to fit an unlimited set of 
situations. 

SOLO Taxonomy 

Prestructural: Learners do not engage in the 
task or respond inappropriately, e.g., POLY 40, 
when POLY is defined as 

TO POLY: TIMES :SIDE :ANGLE 
REPEAT :TIMES [FORWARD :SIDE 

RIGHT :ANGLE ] 
END 

Unistructural: Learners are able to use only 
one piece of information, e.g., POLY 50 50 50 

Multistructural: Learners are able to use sev
eral pieces of information but can't relate them, 
e.g., POLY 20 30 40 (different numbers but no 
meaningful relationship between the numbers 
and their role in POLY). 

Relating: Learners integrate the separate pieces 
of information to produce a variable solution to 
the task, e.g., POLY 4 50 90 

hltt LOGOEXCIIA.NGE 

by Douglas H. Clements 

We also discussed the goals of the Atlanta-Emory 
Logo Project-breaking the vicious cycle of rote learn
ing through Logo (Olive, 1991). We snowed that some 
of the ninth-grade students had progressed to a fairly 
high level. What about the rest of the students? What 
levels did they achieve? How did the levels in one 
theory relate to those in another? What implications 
does all this have for teaching? 

More Results 

Students' Progress Through SOLO Levels 
Most students started their Logo programming 

explorations Unistructurally and then progressed 
through Multistructural to Relating responses. The same 
pattern, however, did not hold for responses to the 
geometric concepts. Most students (18 of 30) only 
achieved Multistructural responses. 

Now let's see how the levels related to each other. 
Olive measured students' SOLO level, van Hiele level, 
and quality of understanding (Skemp's instrumental 
vs. relational understanding). He measured them both 
in Logo programming and in geometry achievement. 
Were all these ways of thinking related?2 

SOLO Level in Logo <-> SOLO Level in Geometry 
The first question was whether students' SOLO 

level in Logo programming was related to their SOLO 
level in geometric tasks. Only students who obtained a 
Relating SOLO level response to the Logo program
ming tasks obtained a Relating SOLO level on the 
geometric tasks. Some students, however, obtained a 
Relating level in Logo but did not obtain it in geometry. 
Therefore, a Relating level response to Logo program
ming would appear to be necessary but not sufficient 
for obtaining a Relating level on the geometric tasks. 

van Hiele Level in Logo <-> van Hiele Level in 
Geometry 

Similarly, a van Hiele descriptive approach to Logo 
programming tasks appears to be necessary but not 

1 I would personally be shocked. 
2 There are many possible relationships coming up! I 
hope you enjoy seeing patterns emerge as you peruse 
them all. The startling truth, however, remains that I 
will never actually know if you skip right to the discussion. 

Spring 1992 



sufficient for students to take a descriptive approach to 
geometric tasks. 

van Hiele Level <-> SOLO Level 
Things now get more complicated as we try to 

connect one theory to another. For example, students 
who take a descriptive approach to the Logo program
ming tasks tend to respond to these tasks at a Relating 
SOLO level. This was not symmetric, however. There 
were students at the Relating SOLO level who did not 
take a descriptive approach. 

Similarly, students who takeadescriptiveapproach 
to the geometry tasks responded to these tasks at the 
Relating SOLO level. 

Thus there seems to be a connection between the 
van Hiel~ approach and the SOLO level achieved. 
Students who approach a task descriptively are likely to 
achieve a Relating level. However, if they do not ap
proach the task descriptively, they still might achieve a 
Relating level using a visual approach. 

van Hiele Level <-> Skemp's Qualities of Under
standing 

First, if students did not achieve a Relational un
derstanding of Logo, they did not understand geomet
ric conceptions Relationally. They achieved only In
strumental understanding. This is parallel to what we 
just saw. 

Second, the relationships are also similar. Students 
who take a van Hiele descriptive approach also achieved 
Relational understanding. In other words, students 
who approached Logo tasks by thinking about the 
properties of the figures also thought about the proper
ties of figures in geometric tasks-and they showed a 
Relational understanding of both types of tasks. 

SOLO Level(<-> van Hiele Level) <-> Skemp's 
Qualities of Understanding 

Achieving the Relating SOLO level does not guar
antee Relational understanding. Students had to ap
proach the tasks descriptively to achieve Relational 
understanding. Therefore, using the descriptive van 
Hiele approach seems critical. 

Skemp's Qualities of Understanding<-> Math
ematics Grades 

There was a weak, but positive, relationship be
tween students' algebra and geometry grades. More 
interesting, all students who showed Relational under
standing did better in geometry than their algebra 
scores would have predicted. The opposite was true for 
those with only Instrumental understanding. Overall, 
Relational students achieved a higher geometry grade 
than did the Instrumental students. 

Whew! Time for a ... 

Volume 10 Number 3 

Discussion: What Does It All Mean? 

The pattern of results is satisfying, if not surprising. 
Students had to program in Logo successfully and with 
some sophistication to achieve success and sophistica
tion in geometric achievement. Such success with Logo 
did not guarantee success with geometry, but it was a 
prerequisite. 

What is surprising is that three students did not 
achieve Relational understanding of geometric con
cepts. They apparently could not relate their previous 
geometric experiences to their work with Logo. This 
lead to Recommendation 1: Logo experiences need to be 
more directly linked to students' geometric experi
ences in the earlier grades.3 

Another pattern involves the importance of stu
dents using a descriptive approach. They reach higher 
levels of learning when they think about the properties 
of geometric figures. Even when they achieve the SOLO 
Relating level, they are more likely to achieve Rela
tional understanding if they use a descriptive approach. 
For students using a descriptive approach, the lan
guage they use-Logo and natural language (English)
signals the presence of important properties. Thus, they 
automatically have many ideas to use in solving prob
lems, such as the measure of a figure's angles or the 
parallelism of its sides. They can then more easily build 
connections between the figures, their properties, and 
Logo programming (Relating SOLO level). This leads 
to a Relational understandingof the geometric concepts
knowing both what to do and why. The concepts will 
become part of an interconnected network of ideas. 

We must ask a question: Why don't some students 
achieve higher levels? One reason is that using Logo 
can reinforce visual, instead of descriptive, approaches. 
The turtle provides immediate visual feedback. Using 
this feedback, students can become successful problem 
solvers at the visual le•:el. I have raised this point 
continuously in this column; see especially "Strategies 
for Solving Turtle Geometry Problems" in the Decem
ber I January 1990-1991 issue of Logo Exchange [9(4), 32-
34]. This lead to Recommendation 2: Teachers must build 
challenges into Logo activities that encourage descrip
tive approaches. These activities should create what 
van Hiele describes as a "crisis in thinking" at the visual 

3 Olive is kind enough to state that our work (Clements 
& Battista, 1988; Clements & Battista, 1990) has shown 
that when such links are made, the Logo experiences 
can aid students' construction of key geometrical con
cepts (Battista & Clements, 1991). I was too humble to 
put this is the regular text. Of course, many people 
actually pay more attention to footnotes. 

LoGoExcHANGE ttttt 43 



44 

level, showing the deficiency of visual approaches and 
the power of descriptive approaches. Together with 
appropriate teacher interventions, such challenging 
tasks may be critical for optimizing learning with Logo. 

Recommendation 3 deals with just these teaching 
responsibilities. Teachers could examine students' re
sponses using the frameworks in Table 1. These frame
works could help them pose tasks and provide inter
ventions that they tailor to the needs of a particular 
group of students. 

Many students who learned algebra Instrumen
tally maintained a preference for instrumental learning 
in their Logo course. Recommendation 4: For such stu
dents, teachers should design Logo activities that gen
erate students' desire for Relational learning. These 
activities should stimulate curiosity that was suppressed 
too frequently in the past. Students may need to be 
shown how to explore mathematical ideas. 

Recommendation 5: Teachers and students should 
strive together for Relational understanding. 

Recommendation 6: Logo work should be an impor
tant part of regular mathematics instruction, not just an 
add-on. 

For more information on the project, contact 

John Olive 
Department of Mathematics Education 

105 Aderhold Hall 
Athens, GA 30602 

References 
Battista, M. T., & Clements, D. H. (1991). Logo geometry. 

Morristown, NJ: Silver Burdett & Ginn. 
Clements, D.H.,& Battista,M. T. (1988,November). The 

development of geometric conceptualizations in Logo. 
Paper presented at the meeting of the International 
Group for the Psychology in Mathematics Educa
tion-North American Chapter, DeKalb, IL. 

Clements, D. H., & Battista, M. T. (1990). The effects of 
Logo on children's conceptualizations of angles and 
polygons. Journal for Research in Mathematics Educa
tion, 21, 356-371. 

Olive, J. (1991). Logo programming and geometric un
derstanding: An in-depth study. Journal for Research 
in Mathematics Education, 22, 90-111. 

Time to prepare this material was partially pro
vided by the National Science Foundation under Grants 
No. MDR-8954664 and MDR-9050210. Any opinions, 
findings, and conclusions or recommendations ex
pressed in this publication are those of the authors and 
do not necessarily reflect the views of the National 
Science Foundation. 

ttltt LOGOEXCHANGE 

Douglas H. Clements, associate professor at 
the State University of New York at Buffalo, 
has studied the use of Logo environments in 
developing children's creative, mathematics, 
metacognitive, problem-solving, and social 
abilities. He is currently working with several 
colleagues on a second NSF-funded project to 
develop a full K-6 mathematics curriculum 
featuring Logo. 

Douglas H. Clements 
State University of New York at Buffalo 
Department of Learning and Instruction 

593 Baldy Hall 
Buffalo, NY 14260 

CIS: 76136,2027 BITNET: INSDHC®UBVMS 

Spring 1992 



Global Logo Comments 
by Dennis Harper 

Logo Exchange Continental Editors 
Africa Asia Australia Europe Latin America 
Fatimata Seye Sylla Marie Tada Anne McDougall Harry Pinxteren Jose Valente 
UNESCO/BREDA St. Mary's Int. Sch. Monash Univ. Logo Centrum Nederland NIED 
BP 3311 Dakar 6-19 Seta 1-Chome 6 Riverside Dr. P.O. Box 1408 UNICAMP 
Senegal, West Africa Setagaya-Ku 

Tokyo 158, Japan 
East Kew 3120 BK Nijmegen 6501 13082 Campinas 
Victoria, Australia Netherlands Sao Paulo, Brazil 

During last summer's NECC conference in Phoe
nix, I was a member of a panel whose purpose was to 
discuss whether Logo was entering the schools as a 
"Trojan Horse." This Trojan Horse concept was conjec
tured by Professor Seymour Papert some years ago. 
Looking at this month's submissions by our global field 
editors, one could certainly make a supporting case for 
the Trojan Horse theory. 

In Australia, Anne McDougall finds Logo going 
beyond the introductory stage and sees Logo thinking 
entering many areas of their educational system. In 
Japan, Marie Tada explains how Logo is acting as a 
front end to school multimedia projects. Fatimata Seye 
Sylla reports that in Senegal, West Africa, Logo be
comes just another activity in a summer camp for 
youngsters. 

Logo at ACEC 191 
by Anne McDougall 

The Ninth Australian Computers in Education 
Conference was held at Bond University of the Gold 
Coast in Queensland from September 22 to 25, 1991. 

Scanning the conference program might at first 
have been alarming for Logophiles because only 3 of 
the 64 sessions had any reference to Logo in the titles! 
Does this mean the development of Logo thinking and 
use by Australian teachers and students has almost 
come to an abrupt halt? Fortunately, it does not, but it 
does indicate, I think, an interesting development in 
Logo adoption and practice in this country. More on 
this in due course, but first to the three papers that 
clearly were about Logo work. 

Two of these papers were from Coombabah Pri
mary School in Queensland, where a group of 60 chil
dren in Grade 6 are participating in a project using 
Logo Writer and a high density of computers (half the 
children have laptop machines). This project is spon
sored by the Queensland Education Department. 

Volume 10 Number 3 

Jenny Betts, one of the teachers involved in the 
project, presented a session titled "The Creation of 
Databases Using Logo Writer." She described some in
teresting database development work done by the 
children, using a variety of approaches, and becoming, 
as they do this work, highly skilled programmers. 
Jenny noted that the children's main source of pro
gramming ideas is each other, although other assis
tance comes from experts visiting the school, Logo 
books and the Logo Writer manual. She described her 
role as a teacher as that of a guide "mostly to another 
child who can answer the question." She went on to 
emphasize the importance of the availability of large 
amounts of time for students to work on these projects. 

Another Coombabah teacher, Dave Mitchell, pre
sented some Logo Writer mathematics activities in which 
children used the page for noting estimated answers 
before performing calculations in the Command Cen
ter. 

The third presentation with Logo in its title was 
from Gary Stager, currently back in Australia for some 
teacher professional development workshops and other 
engagements. In "New Environments for Intellectual 
Expression: Mac Logo Writer and Logo Ensemble," Gary 
demonstrated many of the distinctive features of these 
new products. His talk interested those in the audience 
already familiar with Logo and Logo Writer because it 
involved the increased potential for expression through 
programming in these new environments. On the other 
hand, Gary's talk rather stunned some participants 
who were not already familiar with Logo Writer, but he 
entertained us all with his virtuoso programming and 
impressive presentation skills. 

So, what then of Logo and the rest of the confer
ence? Previous conferences of this kind usually have 
included quite a group of papers describing classroom 
implementation or research with Logo; in some years 
there even has been a delineated Logo "stream" within 
the conference. 

LocoExcHANGE ttttt 45 



46 

Despite the impression created by the titles of the 
papers, there was a good deal of presentation and 
discussion of Logo ideas at ACEC '91, although the 
ideas were more integrated into papers focusing less 
directly on implementing and "evaluating" Logo itself. 
It is as if, at last, the language is beyond the introduction 
phase; now Logo "thinking" is contributing to the 
discussion of many other educational computing is
sues and practices. The following are just some ex
amples. 

• Chris Bigum, in his paper "Schools for Cy
borgs: Educating Aliens," made extensive 
referencetothewritingsofPapertandTurkle. 

• Some of the metaphors deliberately used in 
Logo contexts were considered in Carolyn 
Dowling's paper "Metaphorically Speak
ing-The Language of Classroom Comput
ing." 

• In his paper "Computers, Children, and 
Learning: Some Predictions for the 1990s," 
Peter Shackleton predicted that Lego /Logo 
and computer control technologies would 
become increasingly important for problem 
solving and concept development. 

• Papert and Turkle were extensively quoted 
in a fascinating paper and most entertaining 
presentation entitled "Editable Selves: A 
Thought Experiment in Information Tech
nology for Thinking Teachers" by Neville 
Stern. 

• Logo research work provided part of the 
context for a methodological paper, "Learn
ing With Computers: What Type of Re
search?" by Helga Rowe. 

• We learned more about the Logo Writer work 
at Coombabah Primary School from Greg 
Grimmett's paper "Laptop Computers: Pana
cea or Problem?" 

• There was also a paper entitled "Searching 
for Solutions: Experimental Applied Math
ematics in a Primary School Environment," 
by John Bel ward, Dave Mitchell, and Michael 
Ryan. 

• A paper on language study, "Unraveling 
Rules and Exceptions," by Karen Hallett, 
rounded out the presentations. 

ttitt LoaoExcHANGE 

The establishment of OzLogo, a Special Interest 
Group for teachers interested in the use of Logo in 
primary, secondary, and tertiary education, was an
nounced at ACED '91. This newly formed group, based 
in Victoria but catering members throughout Austra
lia, will arrange meetings and teacher professional 
development activities, provide a mutual support net
work for Logo-using educators, and produce a regular 
newsletter or journal. 

Copies of the Proceedings of the 1991 Australian 
Computers in Education Conference may be obtained 
from the Computer Education Group of Queensland, 
GPO Box 1669, Brisbane, Queensland 4001, Australia, 
for Aus$25 plus postage. 

From Asia 
by Marie Tada 

Konnichi wa (Hello!) from Tokyo. 
So much has been going on with conferences, inter

views, and professional contacts that it's hard to know 
where to begin. I felt fortunate to receive an invitation 
from the Czech Ministry of Education to participate in 
theThirdEast/WestinvitationalSeminaronNewTech
nologies in Education (jointly sponsored by the Czech 
Ministry of Education and the International Center for 
Technology and Education at the Institute of New 
Technologies, Moscow, USSR and University of Hart
ford, USA). This turned out to be a unique gathering of 
international educators and researchers and was an 
even more intense experience because it coincided with 
the coup in the USSR. Many of our delegates were from 
these regions, and in the ensuing discussions and en
counters we learned much as a group about the difficul
ties of living under repressive regimes. I left the confer
ence with a deep respect for the people who are some
times invisible behind the facades of governments that 
do not run by the democratic rules we take so much for 
granted. 

The conference left me with a lot to think about. 
Many constructive cooperative projects were dis
cussed-especially in the area of telecommunications. 
One thing missing, aside from parts of my presentation 
and some ideas presented in discussions, was Logo. To 
me, Logo is a natural base for creating a technology
using culture in a school while allowing children to 
explore and discover in the Logo learning environ
ment. It seems, however, that Logo is perceived as 
being too teacher-education and equipment intensive, 
and there are perhaps too few cases where children get 
beyond the fundamentals of turtle graphics. I feel that 
Logo-based computer studies can pave the way and 
create a mind set for the entrance of more Logo-like 

Spring 1992 



uses of technology in the schools-telecommunica
tions units and projects using hypermedia and multi
media being a few of these. 

The Prague conference was a rich and meaningful 
experience for all involved. Despite the great changes 
going on now in those countries, we hopefully will 
remain aware of the remaining economic and societal 
difficulties our Soviet and eastern and central Euro
pean colleagues may face in bringing technology-based 
international exchanges into the schools. From such 
awareness, perhaps we can build bridges of helpful 
assistance. 

In the past year, I have become very much involved 
with multimedia. I feel that perhaps there has been too 
much emphasis on the use of many kinds of hardware 
(like laser disc players and CD-ROM) and not enough 
emphasis on what multimedia means-the manipula
tion of graphics, text, animation, video, and audio by 
the computer. If we think in terms of this latter defini
tion, then Logo certainly has been giving us many 
elements of multimedia all along with lots of powerful 
ideas thrown in to boot! 

As a case in point, I recently had the opportunity to 
talk with people at the New Media Laboratory at 
Fukutake Publishing Company. Last year, I wrote a 
Logo Exchange article about Findout, Fukutake's excel
lent Logo-based software (which is primarily geared to 
the elementary and junior high levels but could be very 
effectively used at higher levels as well). Findout offers 
word processing, database, graphics, music, anima
tion, and some telecommunications functions. 

I became fascinated with the number of interfaces 
that could be used with Findout and thought how we 
are certainly on the road to making a fully multimedia 
Logo. I observed the Findout program controlling the 
NEC COMBOY video tape player, allowing video se
quences to be searched for and shown as part of the 
Logo project. Because a laser disc player can be attached 
to the RS 232C port, it should also be possible to control 
the laser disc with Findout. 

I took pictures using a Fujix still video camera, 
which allows up to SO shots to go directly onto a floppy 
disk and then be shown directly on a television screen 
with the use of a special adapter. We then used Findout 
to sequence and build a story around these shots. An 
FM sound board used with the Findout Harmony pro
gram allows construction of up to six-note chords in 
eight octaves. The music that can be easily created is 
quite impressive. 

An AD-232 adapter allows measurements to be 
made and manipulated in Findout for heat, water levels, 
movement, voltage, and so forth. Much of what the 
project's science and math teachers have done with 
these sensors are collected on ''library disks" and sent 
out as resources to other teachers. The Valiant turtle can 

Volume 10 Number 3 

be emulated, and a board can be used that will input the 
text of words, match these up with a dictionary, and 
give a voice output of the Japanese (and some English) 
word equivalents. It seems to me that it won't be long 
before we are inputting all kinds of digital data to our 
Logo programs as Logo continues to evolve as a timely 
modem tool for learning and exploration. 

At Fukutake, I also had the chance to view some of 
the entries in their annual contest for good ideas in 
using Findout. There are three contest areas-school 
applications, programming, and sound and graphics. 
One programming award went to an English teacher 
who made a program that simulated a hamburger 
stand. Children could input information on how much 
they wanted to spend and what they wanted to buy. 
Many basic phrases, such as "What would you like?" 
and "That will be 300 yen," brought together interest
ing English learning with a good Logo programming 
idea. 

Another winner was a junior highschool boy whose 
program allowed the user to choose an ad venture to go 
on with a dog-to the beach, the art gallery, and so 
forth. Another was a take-off on "Where' s Wally," with 
the user inputting the number of turtles to be displayed 
and then inputting commands. Only one turtle will 
follow the commands correctly, and it is up to the user 
to discover this 'Wally" from among the errant turtles. 
A teacher created an art project that constructed a 
variety of solid figures in wire-like 3-D form and asked 
the user to apply gradations of color to fill in and 
complete the picture. As a good incentive to participate 
in the contest, the winners get some great prizes (per
sonal computers, printers, and scanners) as well as the 
satisfaction of winning. "fhe results are then compiled 
and sent to other Findout users-a fine resource for 
sure. 

Africa Revisited 
by Fatimata Seye Sylla 

I would like to remind our readers that the 
"Laboratoire Informatique et Education (L.I.E.)" was 
the Logo research project implemented in Dakar, 
Senegal, in March, 1982. This study aimed at investigat
ing the learning process in a Logo environment, the 
impact of the computer and Logo on teachers and 
school children, and interactions in the classroom. 

During this past annual school break, July through 
September, the Computers and Education Project of 
Senegal undertook several activities to promote the use 
of computers by school children and adults nation
wide. And, of course, Logo was the software used. 

For several weeks before the break, the project team 
had to organize training courses for the future trainers 

LOGOEXCHANGE 47 



48 

selected within the so-called "popular educators" of 
the Ministry of Youth. Within the 10 regions of Senegal, 
the Ministry of Youth, in collaboration with the Minis
try of Technology, set up camps with computers and 
software (mainly Logo and computer games). Govern
ment and private institutions contributed financially to 
send their personnel's children to the camps. 

Children had a good time drawing, playing music, 
and doing mathematics using Logo on the floor with 
their feet and on the screen with the turtle. In addition 
to doing Logo activities, they played other Senegalese 
and Western games. They swam, sang, danced-they 
had fun! 

What was impressive in these camps was that the 
computer played a major role in allowing children to 
get acquainted with each other. One child would ad
mire another's drawing, ask him how he did it, and that 
would be a start of a new friendship. 

In Dakar, the Youth Foundation sponsored and 
actively participated in another special event. Adults 
and young children were trained in the use of comput
ers according to each person's specific need. During the 
morning sessions adults learned how to use word
processing programs, and children programmed in 
Logo in the afternoons. This went on for three weeks 
from September 10 to September 30, 1991, at the Blaise 

Senghor Centre. Twelve secretaries were trained right 
away. 

These kinds of activities aim at spreading the use of 
computers not only within the schools but also outside 
the school system. Thus, more training courses are 
organized within the Laboratory for trainers who would 
be ready to train children and or adults throughout the 
country. 

At the same time, the teacher training curricula 
now includes computer training courses as the use of 
computers in the Senegalese educational system con
tinues to grow. Computers have been shown to have a 
positive impact on the interaction between teachers 
and students and on the way knowledge is transmitted 
and acquired. 

This short report shows how the objectives of the 
former Logo project have evolved from studying the 
impact of the use of I.ogo and computers on the school 
system to the widespread use of computers by the 
Senegalese people. 

Dennis Harper 
University of the Virgin Islands 

St. Thomas, USVI 00802 

LONG DISTANCE LOGO 
Educators-Let the classes come to you! 
Available for Logo Writer and Terrapin's Logo PLUS 

Introduction to Logo For Educators, a graduate level ISTE Independent Study course. Learn at your own pace 
while corresponding with your instructor by mail, fax, or telecommunications. Tuition is $349.00 for a four quarter
hour class. Tuition is reduced for non-credit enrollment. 

WORK INDIVIDUALLY 
OR WITH A GROUP 
Take Introduction to Logo For 
Educators at home, or study with a 
group of colleagues. The course 
uses video tapes (ON LOGO) with 
MIT's Seymour Papert, printed 
materials, textbooks, and disks. 
View the tapes, read and report on 
course materials, do projects, and 
design lessons for students. 

NOT JUST ANOTHER 
CLASS 
Dr. Sharon Yoder, editor of Logo 
Exchange, has designed 
Introduction to Logo For 
Educators to provide staff 
development and leadership 
training. The four quarter-hour 
course carries graduate credit from 
the Oregon State System of Higher 
Education. 

ON LOGO VIDEO TAPES 
School Districts may obtain a license 
for the use of the ON LOGO package 
of 8 half-hour videotapes and 240 
pages of supporting print. For a one
time fee of $1 ,295, the package may 
be obtained with both tape and print 
duplicating rights, enabling districts to 
build libraries at multiple sites. 
Tuition rates are also lower for group 
enrollment. 

,:ra. ~ g ~ 1787 Agate Street, Eugene, OR 97403-1923 • '"""""'"'' Sod<iy fw T"""'logy U. Ed""tioo 

To receive an Independent Study course catalog, write or call: ,. Phone: 503/346-2412 Fax: 503/346-5890 
~<:!l ! Bitnet: ISTEOOregon CompuServe: 70014,2117 
~Cfjr ,~ .~ ISTE.Net (GTE): ISTE.office 

ttltt LOGOEXCHANGE Spring 1992 





T
he

 In
te

rn
at

io
na

l S
oc

ie
ty

 fo
r 

T
ec

hn
ol

og
y 

in
 E

du
ca

ti
on

 to
uc

he
s 

al
l c

or
ne

rs
 o

f t
he

 w
or

ld
. A

s 
th

e 
la

rg
es

t i
nt

er
na

ti
on

al
 

no
n-

pr
of

it
 p

ro
fe

ss
io

na
l o

rg
an

iz
at

io
n 

se
rv

in
g 

co
m

pu
te

r 
us

in
g 

ed
uc

at
or

s,
 w

e 
ar

e 
de

di
ca

te
d 

to
 t

he
 i

m
pr

ov
em

en
t o

f 
ed

uc
at

io
n 

th
ro

ug
h 

th
e 

us
e 

an
d

 i
nt

eg
ra

ti
on

 o
f 

te
ch

no
lo

gy
. 

L
og

o 
E

xc
ha

ng
e 

IS
T

E
 

17
87

 A
ga

te
 S

tr
ee

t 
E

ug
en

e,
 O

R
 9

74
03

-1
92

3 

D
ra

w
in

g 
fr

om
 t

he
 r

es
ou

rc
es

 o
f 

co
m

m
it

te
d 

pr
of

es
si

on
al

s 
w

or
ld

w
id

e,
 I

ST
E

 p
ro

vi
de

s 
in

fo
rm

at
io

n 
th

at
 is

 a
lw

ay
s 

up
-t

o-
da

te
, c

om
pe

ll
in

g,
 a

n
d

 r
el

ev
an

t 
to

 y
ou

r 
ed

uc
at

io
na

l 
re

sp
on

si
bi

li
ti

es
. 

P
er

i
od

ic
al

s,
 b

oo
ks

 a
nd

 c
ou

rs
ew

ar
e,

 S
pe

ci
al

 I
nt

er
es

t 
G

ro
up

s, 
In

de
pe

nd
en

t 
St

ud
y 

co
ur

se
s,

 p
ro

fe
ss

io
na

l 
co

m
m

it
te

es
, a

n
d

 t
he

 P
ri

va
te

 S
ec

to
r 

C
ou

nc
il

 a
ll 

st
ri

ve
 to

 h
el

p 
en

ha
nc

e 
th

e 
qu

al
it

y 
of

 in
fo

rm
at

io
n 

yo
u 

re
ce

iv
e.

 

It
's

 a
 b

ig
 w

or
ld

, b
u

t w
it

h 
th

e 
jo

in
t e

ff
or

ts
 o

f e
du

ca
to

rs
 li

ke
 y

ou
rs

el
f,

 IS
T

E
 b

ri
ng

s 
it

 c
lo

se
r. 

B
e 

a 
p

ar
t o

f 
th

e 
in

te
rn

at
io

na
l s

ha
ri

ng
 o

f e
du

ca
ti

on
al

 i
de

as
 a

n
d

 t
ec

hn
ol

og
y.

 J
oi

n 
IS

T
E

. 

Jo
in

 to
da

y,
 a

n
d

 d
is

co
ve

r 
h

o
w

 I
ST

E
 p

u
ts

 
yo

u 
in

 to
uc

h 
w

it
h

 th
e 

w
or

ld
. 

IS
T

E
 

17
87

 A
ga

te
 S

t.,
 E

ug
en

e,
 O

R
 9

7 4
03

-1
92

3.
 

ph
. 5

03
/3

46
-4

41
4.

 


