
Spring 1999 Volume 17 I Number 3

THE BEAUTY
OF MATHEMATICS

INSIDE
G 20 Reasons to Use

Boxer (Instead of Logo)

G Simulating Artificial
Life with Logo

Giving Meaning to Mean
(and Standard Deviation)

Meaning and Math

21st Century Logo Quilts

Chipping Away
at Mathematics

Research and Mathematics
Education Standards

Book Review,
Teacher Feature,
The More Things Change

1ste

Ed;torial PubHsher
International Society for Technology in Education

Ed;tor-;n-ch;ef
Gary S. Stager, Pepperdine University

logoexchange@moon.pepperdine.edu

Copy Ed;ting, Des;gn, & Production
Ron Richmond

Found;ng Ed;tor
Tom Lough. Murray State University

Des;gn, Illustrations & Art o;rect;on
Peter Reynolds, Fablevision Animation Studios

pete@fablevision.com

Contributing Ed;tors
Dr. Douglas Clements, SUNY Buffalo
Dr. Carolyn Dowling, Australian Catholic

University
Alan Epstein, Metasoft
Dr. Brian Harvey, U.C. Berkeley
Daniel E. Kinnaman, Curriculum Administrator

Magazine
Dr. Julie Sarama, Wayne State University

International Ed;tor
Jeff Richardson, Monash University, Australia

International Ed;tor Emeritus
Dennis Harper, Olympia, Washington School

District

SIGLogo Officers
Stephen Sesko, President
Jeff Richardson, Vice-President
Hope Chafiian, Secretary/Treasurer
Gary S. Stager, Editor

SIG Coord;nator
Tom Magness

1998-1999 ISTE BOARD OF DIRECTORS

ISTE Executive Board Members
Lynne Schrum, President University of Georgia

Athens (GA)
Heidi Rogers. President-Elect University of Idaho
Cheryl Lemke, Secretary Milken Family

Foundation (CA)
Michael Turzanski, Treasurer Cisco Systems,

Inc. (MA)
Chip Kimball, At Large Lake Washington

School District (WA)
Cathy Gunn, At Large Northern Arizona

University

ISTE Board Members
Larry Anderson Mississippi State University
Jose Calderoni ILCE, Mexico
Penny Ellsworth \M!stern Springs School

District 101 (IL)
Marianne Handler National-Louis (IL) University
Dennis Harper Olympia School District (WA)
Jorge Ortega FACE/Leon County SD (FL)
Neal Strudler University of Nevada, Las Vegas
Sue Waalkes Upper Dublin School District (PA)
Peter Wholihan Sts. Paul & Peter School, Virgin

Islands

ISTE Comm;ttees
Lajeane Thomas Accreditation and Standards
Dave Brittain Awards
Cathy Gunn Distance Learning
Michael Turzanski Finance
Paul Resta and Gerald Knezek International
Jenelle Leonard
LarySmith
M. D. Roblyer

Minority Affairs
Policies and Procedures
Publications

ISTE Executive Officer
for Research and Development
David Moursund

Volume 17 I Number 3

Logo Exchange is published quarterly by the In
ternational Society for Technology in Education
Special Interest Group for Logo-Using Educa
tors. Logo Exchange solicits articles on all as
pects of Logo use in education.

Subm;ss;on of Manuscripts
Manuscripts should be sent by surface mail on
a 3.5-inch disk (where possible). Preferred for
mat is Microsoft Word for the Macintosh. ASCII
files in either Macintosh or DOS format are also
welcome. Submissions may also be made by elec
tronic mail. Where possible. graphics should be
submitted electronically. Please include elec
tronic copy. either on disk (preferred) or by elec
tronic mail, with paper submissions. Paper sub
missions may be submitted for review if
electronic copies are supplied on acceptance.

Send surface mail to:

Gary S. Stager
21825 Barbara St.
Torrance, CA 90503 USA

Send electronic mail to:
logoexchange@moon.pepperdine.edu

Logo Exchange is published quarterly by the International Society for Technology in Education (ISTE). 1787 Agate St., Eugene, OR
97403-1923, USA: 800 .336.5191.

ISTE members may join SIG/Logo for $24. Dues include a subscription to Logo Exchange. Non ISTE member subscription rate is $34.
Add $10 for mailing outside the USA. Send membership dues to ISTE. Add $4.00 for processing if payment does not accompany your
dues. VISA, MasterCard, and Discover accepted.

Advertising space in Logo Exchange is limited. Please contact ISTE's director of advertising services for space availability and details.

Logo Exchange solicits articles on all topics of interest to Logo-using educators. Submission guidelines can be obtained by contacting the
editor. Opinions expressed in this publication are those of the authors and do not necessarily represent or reflect official ISTE policy.

© 1999 ISTE. All articles are copyright of ISTE unless otherwise specified. Reprint permission for nonprofit educational use can be
obtained for a nominal charge through the Copyright Clearance Center. 27 Congress St., Salem, MA 01970; 508.750.8400; Fax
508.750.4470. ISTE members may apply directly to the ISTE office for free reprint permission.

POSTMASTER: Send address changes to Logo Exchange. ISTE. 480 Charnelton St .. Eugene, OR 97 401 -2626 USA. Periodicals postage
paid at Eugene, OR. USPS# 000-554 . ISTE is a nonprofit organization with its main offices housed at the University of Oregon . ISSN#
0888-6970.

This publication was produced using Aldus PageMakert<'.

....

Spring 1999 Vol. 17 I No.3

Contents

ARTICLES

Twenty Reasons Why You Should Use Boxer (Instead of Logo)
J\. J\. diSessa 7

A Note from Andy diSessa, creator of Boxer
A A diSessa 17

Simulating Artificial Life with Logo
Bill Engel and Pat Greene 20

Giving Meaning to Mean (and Standard Deviation, Too)
Tom Lough , 34

COLUMNS

EDITORIAL LOGO: SEARCH AND RESEARCH
The More Things Change ... Research and Mathematics
Gary S. Stager 2 Education Standards

QUARTERLY QUANTUM Douglas H. Clements

Meaning and Math
and Julie Sarama 27

Tom Lough 3 FOR BEGINNERS

TEACHER FEATURE
21st Century Logo Quilts

Stephen Costa
Gary S. Stager 31

Gary S. Stager 4 THE LAST WORD

BOOK REVIEW
Chipping Away at Mathematics:

Making Numbers Count A long-time technophile's worries

Carolyn Dowling 5 about computers and calculators
in the classroom

IN THEIR OWN WORDS
Using Spezeski's

E. Paul Goldenberg 36

Poly.Round Procedure
John Hayes 23

STARTING WITH STARLOGO
Auto Maze

1ste J\lan Epstein 25

School math ... Few words strike
such fear in the hearts of the pub
lic. (Although I did once see an

exhibit at my local shopping mall cel
ebrating "Mobile Army Dentistry."
Does the Army actually believe that
this will boost recruitment?) For me,
Logo has been the antidote for the
years of psychic damage I endured at
the hands of school math teachers.

School math should not be confused
with the actual field of mathematics.
There may be no other school subject
whose teaching and curriculum bears
so little resemblance to the actual disci
pline. School math is mechanics, math
ematics is mystery. School math is a
topic per week with test on Friday,
mathematics is a way of understanding
the world. School math is about marks
on paper. mathematics is about beauty.
Logo offers many children an opportu
nity to acquaint themselves with that
beauty, mystery, and epistemology.

The 1990 National Council of
Teachers of Mathematics Standards
contain a statement that has challenged
my thinking for several years now. The
Standards state that "More than 112 of
all mathematics has been invented
since WW II." Where is this stunning
piece of news reflected in most math
curricula? To ignore this progress is to
deny lots of kids access to exciting new
branches of more playful, experimen
tal. visual mathematics such as chaos,

2

EDITORIAL / GARY S. STAGER

The More
Things Change • • •

fractal geometry, number theory, topol
ogy, and cellular automata. These
emerging topics may provide a port of
entry to the beauty and power of math
ematics for learners, like myself, who
were not moved by solving dozens of
identical quadratic equations.

The Standards go on to explain the
causes of this explosion in mathemati
cal progress.

1. Science and technology make
ever new demands on mathemat
ics for assistance.

2. Each new, completed result be
comes the potential starting point
for several new investigations. The
new technology not only has made
calculations and graphing easier.
it has changed the very nature of
the problems important to math
and the methods mathematicians
use to investigate them. (1990
NCTM Standards, page 8)

When I discussed this at the recent
NCTM conference, people in the audi
ence predicted that closer to 80 or 90%
of all mathematics has now been in
vented since World War II. I sincerely
hope that the 2000 NCTM Standards
(take a look at drafts at www.nctm.
org) will acknowledge the rapid ad
vances in mathematical knowledge as
well as the reluctance of the math edu
cation community to seize upon the

LOGO EXCHANGE

exciting potential this progress holds
for learners of all ages.

This issue is dedicated to thinking
about mathematical thinking and
teaching. There are wonderful ideas
for classroom projects, as well as pro
vocative essays challenging us to de
clare our intentions for the future.
Logo pioneers Andy diSessa and Paul
Goldenberg, both Logo users since the
1970s. have contributed thoughtful
pieces to this issue. Andy proudly an
nounces the long-awaited release of
Boxer and states that we should all be
using it because it's better than Logo.
You decide and let us know what you
think! Paul contributed part of a pro
vocative paper in which he muses over
what may actually be lost as we use
computers and software, like Logo, to
learn mathematics. Please think about
their hypotheses and share your views
with us at Logo Exchange.

I look forward to hearing from you! ~

Gary

Gary Stager, Editor-in-Chief
logoexchange@stager.org

See LffiERS TO THE EDITOR (Page 19)

Vol. 17 I No. 3

-

0 ccasionally. it happens to each of
us. You know what I mean. One
of those cosmic connections, a ser

endipitous chain of events with ideas
that seems to happen on their own, with
out warning.

For me, it came about as a result of
two widely separated actions that seemed
to have little relationship to each other.
One was an appointment with my col
lege dean, and the other was the simple
act of reading my mail at home. Let me
sketch them out for you.

Our college hired a new dean several
months ago. One of the first things he
did was to invite each faculty member
for a one on-one appointment. I arrived
a bit early for my meeting, and took ad
vantage of the extra time to survey the
books in his professional library. A slim
volume with the title of Logo Learning
practically leaped off the shelf and into
my hands! Immediately after my meet
ing, I signed the book out and promised
myself I would read it.

Several weeks later, I opened my mail
to discover the February 1999 issue of Phi
Delta Kappan magazine. The cover article
for that issue was "The Mathematical
Miseducation of America's Youth." I
thumbed through the pages and promised
myself I would give it a read sometime soon.

For one reason or another, I did not
accomplish either reading. Then, when
Gary Stager mentioned recently that he
was collecting mathematics articles for
this Logo Exchange issue, I remembered
these two events. At last, things started
into motion; I took out the publications
and began to read.

The Phi Delta Kappan issue had two
articles that caught my eye. In the fea-

Spring 1999

QUARTERLY QUANTUM /TOM LOUGH. FOUNDING EDITOR

Meaning and Math

ture article, "The Mathematical
Miseducation of America's Youth: Ignor
ing Research and Scientific Study in Edu
cation," Michael Battista contrasts the
traditional mathematics teaching style
with that being urged by current educa
tional reform. Lamenting that "the only
time that Americans pay any attention
to mathematics teaching is when educa
tors attempt to improve it," he sketches
out the formidable barriers to reform.

But then he focuses the reader on the
nature of learning mathematics and its
relationship to a constructivist point of
view, suggesting that students personally
construct mathematical meaning from
their experiences. (Meaning. Hmm.
Where have I seen that term before?)

A second article in the same issue (po
sitioned outside the mathematics theme
area) has the engaging title of "Shazam!
You're a Teacher: Facing the Illusory Quest
for Certainty in Classroom Practice." Author
Selma Wassermann develops the idea that
one of the most important tasks teachers
do is to make meaning of events in the class
rooms. By sizing up a situation and reflect
ing on what it means, teachers are able to
choose appropriate actions. She goes on to
suggest that the ability to make meaning is
a learned set of skills, and outlines a way
this might be done. (More meaning. Hmm.
How is all this coming together?}

Aha! The Logo Learning book! I was
disappointed when I first thumbed
through it to discover that it was not
about Logo! Perhaps that is why I did not
rush to read it. But now I remembered
the subtitle: Searching for Meaning in
Education. In less than 150 pages, author
Dale Parnell sketches out the importance
of meaning in teaching and learning.

LOGO EXCHANGE

He defines Logo Learning as an edu
cational philosophy and an educational
strategy that centers on enabling students
to find meaningfulness in their education.
One of the major tasks of Logo Learning
teacher is to "broaden the student's per
ceptions so that meaning becomes visible
and the purpose of learning immediately
[becomes] understandable."

I found my thoughts flashing back
through the years to a book I remember
that was about mathematics and about stu
dents performing learning tasks that were
personally meaningful. Yes, Mindstorms
had all the elements even then!

I am still marveling at how a non-Logo
book named Logo Learning, an issue of
Phi Delta Kappan magazine, and a com
puter language named Logo all came to
gether in my life, each focusing on the
importance of meaning in mathematics.

When a student asks, "Why do I have
to learn this stuff?" I want to have an
answer ready. In the meantime, I have a
lot to think about!

FD 100!

Reference
Parnell, Dale. (1994) LogoLearning: Search

ing for Meaning in Education. CORD
Communications, Waco, Texas.

Tom Lough, Founding Editor,
Murray State University
Department of Elementary and
Secondary Education,
PO Box 9, Murray, KY 42071.
phone: 502.762.2538
fax: 502.762.2540
tom.lough@coe.murraystate.edu

3

....

Steve Costa is acting head of the
Junior School at Methodist La
dies' College (MLC), in Mel

bourne, Australia. He has been an up
per-primary teacher and administrator
at the school for more than a decade.
In 1989, Steve became perhaps the first
teacher in the world to teach a class of
children in which every kid had a per
sonallaptop computer. MLC achieved
international acclaim for their commit
ment to constructionism and personal
computing. Steve played a major role
in that success and welcomed thou
sands of educators from across Austra
lia into his classroom to observe chil
dren learning with laptops and Logo.
Few teachers have had more impact on
their peers than Steve Costa.

Q: How did you get started with Logo?
In 1981 I began using an Apple com
puter. I quickly discovered how to turn
it on, load a floppy disk and enjoy the
excitement of playing a "computer
game." After playing low-res, green
screen, shoot em ups or spelling words
to zap "killer bugs;" Logo was the first
truly educational package I stumbled
upon. Logo was "hard." It made me
think but it was fun 'cause I was in
control. I could have fun while learn
ing and was able to "see" a graphical
representation of my abstract com
mands.

4

TEACHER FEATURE

Stephen Costa

by GARY S. STAGER

Q: What is the most satisfying thing
you and/or your students have done
with Logo?
This sounds like a cop-out, but there
would be numerous satisfying mo
ments I have had with my students.
One line of satisfying moments for me
comes under the heading of "Eureka."
This occurs when students are work
ing on a "serious" project and they dis
cover something by accident. They
type some commands and the outcome
is totally different from what they ex
pected. The "unexpected outcome"
instills in them a desire to find out

LOGO EXCHANGE

why! This self-directed, self-imposed,
serious research into unraveling their
commands is an exciting time for all
involved. The learning is real, purpose
ful and helps to instil a sense of dis
covery and an enjoyment in "thinking"
and "acting like a turtle," and a knowl
edge that they are being creative, in
control.

Q: What did the laptop bring to the
Logo experience?
The introduction of the laptop program
provided an ideal setting to help foster
a true sense of community and a set
ting where a collaborative learning
environment could flourish. As each
student had access to a computer, they
became more willing to share. They not
only shared their work, but their ideas
and skills as well. Students began to
gather around "interesting problems."

Discussions, suggestions and de
bates on the best way to do something,
or how best to solve a problem sprung
up around the room. No longer was
one's own individual work the only
important aspect or priority. Students
were aware they had "time" to learn.
Logo takes time to understand, enjoy
and become familiar with so magic can
happen. An ability to have time to
learn-a chance to learn when they

See TEACHER FEATURE (Page 6)

Vol. 17 I No. 3

Humble Pi: The Role Mathematics
Should Play in American Education,
by Michael K. Smith, 1994,
Prometheus Books, New York

Math: Facing an American Phobia,
by Marilyn Burns, 1998, Math So
lutions Publications, Sausalito, CA

Those of my acquaintance who
claim to love mathematics could
be accurately counted on the fin

gers of a two-toed sloth-and even
then, the activity for which they pro
fess such passion seems to bear little
resemblance to math as it is taught, and
all too frequently loathed and feared,
in school and for a lifetime thereafter.
In his foreword to Michael K. Smith's
Humble Pi, Papert makes a similar ob
servation in relation to the distinction
between what he would regard as etruei
mathematics and those school based ac
tivities described by Smith as "math
ematics," but which Papert would dis
miss as mere "math" (p. 8). Such
semantic and conceptual differences
aside, education systems in many coun
tries of the world share an anxiety, of
ten very publicly expressed, concern
ing the effectiveness of the
mathematical learning which is taking
place in schools.

There can be little doubt as to the
extent of the damage to individual self
esteem that has been wrought by "bad
experiences" in the mathematics class
room. But is mathematics simply an
easily identifiable scapegoat for a range
of far broader concerns about educa
tional principles and practices, or is

Spring 1999

BOOK REVIEW

Making Numbers Count

by CAROLYN DOWLING

there special cause for disquiet, particu
larly in regard to both popular and sys
temic perceptions of the importance of
mathematical competence as a basis for
understanding the underlying struc
tures of the world and of society, as a
necessary preparation for dealing with
the practicalities of everyday life and,
perhaps most importantly of all, as a
predictor of future success in advanced
study and in a vast range of occupa
tions? It is these three assumptions, to
gether representing a widely held be
lief in the "supremacy" of mathematics,
with which Smith takes issue, particu
larly in regard to certain consequences.
These include the weighting given to
scores in the mathematics component
of the SAT test, and in other tests and
examinations regarded as indicators of
the competency of the nation at large.

As Seymour Papert writes in the
foreword to this book, "People who
write truly iconoclastic books cannot
expect unqualified agreement" (p. 7),
and there are many who, while agree
ing with the broad directions of
Smith's case, would suggest that he
takes it too far. Nevertheless, he does
succeed in mounting some compelling
arguments in support of the notion that
the study of mathematics in its current
form at school level is not necessarily
of benefit either to the individual or to
society at large.

By contrast, Burns' book sits far
more easily within the comfort zone of
most readers. While acknowledging the
existence of severe problems in the area
of the teaching and learning of math-

LOGO EXCHANGE

ematics (and hence providing some jus
tification for the feelings of inadequacy
that many of us experience in this re
gard), she does not question the fun
damental "usefulness" of mathematics,
which she describes in her Introduction
as "a subject so important to our lives,"
nor the connection of competence in
this particular discipline with broader
cognitive capacities. She writes, in fact:
"Employers in all fields of work have
issued the same request across the
country. Send us employees who can
think, reason, and solve problems. The
cry is loud and the call is reasonable.
Children must be helped to learn math
ematics in a better way than we were,
so that mathematical limits do not shut
them out of certain life choices and ca
reer options" (p. xi).

There is little in this book to
threaten the long-term interests of the
mathematical establishment and lobby
group. There is, however, much to en
gage the attention of those who would
favour evolutionary rather than revo
lutionary change in the nature and role
of the mathematics that is taught in
schools. Her emphasis on an active, ex
ploratory, situated approach to
numeracy is refreshingly in keeping
with current thinking in a range of
other disciplines. Somewhat in com
mon with Smith, she advocates students
engaging with problems possessing a
complexity which results from their lo
cation within real world contexts rather
than from artificially imposed con
straints, and in which considerations
from many "disciplines" may impinge

5

---------=-·~~~=--~·=-~~~---

upon the solution-or solutions. Such
solutions may indeed vary as appropri
ate in nature, in precision and in the
pathways by which they are achieved,
according to the demands of the particu
lar situation and in line with individual
cognitive preferences. In keeping with
such an approach, Burns devotes con
siderable attention to the importance of
developing skills and confidence in dif
ferent methods of calculation including
"in our heads", "pen and paper" meth
ods and the use of calculators, along
with an appreciation of differing needs
for accuracy in different contexts. She
also argues persuasively for the impor
tance of removing pressures of time on
students (such as etimedi tests)' so as
to encourage exploration of alternative
methods and solutions as distinct from
the rote imposition of formulae.

Neither author is denying that a de
gree of numeracy is a valuable, possible
essential tool for functioning effectively
in todayis world if only, as many of
Bums' examples in particular would
suggest, in the interest of ensuring that
we are able to recognise value for
money! The question of precisely which
mathematical skills we have most need
to master, and how this can be achieved
in such a way that the interest and con
fidence of students is not destroyed in
the process, remains at issue. Each of
these books in its own way makes an
important contribution to our search
for answers, one by asserting our col
lective right to ask the "unaskable"
questions, the other by fruitfully com
bining the insights of a math enthusi
ast (the author) with the experiences
of "the rest of us" in the quest for ways
in which we can all succeed in learn
ing and using mathematics.

Read Carolyn's past reviews and
browse the books at www.stager.org/
lxbooks.html. S.

Carolyn DowUng
Australian CathoUc University
412 Mt Alexander Rd
Ascot Vale, Victoria 303 2
AUSTRALIA
c.dowling@mercy.acu.edu.au

6

TEACHER FEATURE/ Continued from Page 4

want to, or when they feel like work
ing on their Logo activities. Time be
comes more flexible and can be used
to their advantage and not a constric
tor or limit to the excitement of using
a computer.

Q: How does Logo support/enhance
the personal computing experience
for kids?
Logo makes the user personally respon
sible for her own actions! If you tell
the computer to do something it does
it! if what turns out wasn't what you
expected, you need to think about what
needs to be changed. Or ask, "how is
the computer interpreting your com
mands?" You need to be precise and
clear in your thinking and in the pro
cedure you write. The personal satis
faction comes in creating something
that you started out to create. You set
the challenge for yourself, you know
if you have reached it.

Q: Can you tell us about some of the
cool things kids have done with Logo?
I can remember a LogoWriter project
a Year 5 (fifth grade) girl did in 1991.
It had the entire "Princess saved by a
Prince" story with animation, sound
and music. The helpless Princess is at
tacked by dragon. Prince rides off on
horse in pursuit of dragon. The
"Dragon fight" with a prince (Dragon
"breaks" with red streaming colors).
During the marriage ceremony, com
plete with guard of honor, the com
puter played the "Here Comes The
Bride" song as the bride and groom
walked down the aisle. Sounds easy but
at this time in Logo history, music was
made with the Tone #pitch #duration
commands.

Drawings were done using Setpos
commands. Copying setpos pictures
and editing the Xcoordinate or
Y coordinate to move over a bit gener
ated big animations! The girls could
not get enough of doing Logo. The
laptop allowed them to spend "their
time" at home, at school, at recess even,

LOGO EXCHANGE

if they were wished doing THEIR
WORK.

Another was making Polygons ...
The girls worked on the 360 Theorem
and understood how to divide the 360-
degree trip by the number of corners!
This helped to produce many nice tri
angles, squares, hexagons etc. But the
seven-sided figure was tricky because
they hadn't been introduced to repeat
or how to use Rf 360 I 7.

One girl's solution was to have 4
forwards and 4 turns of 51 degrees fol
lowed by 3 forwards and 3 turns of 52
degrees. Total trip 360 degrees and it
looked like a Septagon! Lots of think
ing went into this. A personal prob
lem that was happily solved using
Logo.

Q: What have you learned from Logo
or teaching with Logo?
Kids are amazing, creative, and dying
to discover new things. They are able
to take a simple suggestion or idea and
build upon it. They can take them
selves to places well beyond the
teacher's expectations.

Logo provides an environment
where risk taking is encouraged. There
are many ways to produce a similar end
product. Never believe that they
CAN'T do something, they will always
amaze you, and raise your expectations
and admiration for their ability to
learn, think and achieve.

I have personally learned to be more
patient. To allow more time for the kids
to develop their skills and understand
ing of what Logo can do and what they
can do. I constantly preach to teachers
that they need faith. Faith that won
derful things will happen when using
Logo if they stop worrying about what
the kids are missing! They might need
to give a bit more time to Logo and for
get the timetable for a while. In the long
run, the value of what is learned, pro
duced and the concepts gained will
make up for the maths, spelling or writ
ing lesson not covered in a more con
ventional way. e

Vol. 17 I No.3

Introduction
This paper explains and advocates
Boxer as a computational environment
for educational purposes. I intend
mainly to speak to the Logo commu
nity. However, I hope not to produce a
paper for "insiders" only. Instead, Logo
stands in for many open educational
computing environments as, arguably,
the best of the lot. When I say "Logo"
in this paper, I mean to include suc
cessors like LogoWriter and Micro
Worlds.

Boxer and Logo share a great deal
in terms of philosophy and purposes.
Indeed, the design of Boxer emerged
over a dozen years ago, from within the
Logo project at MIT. It was an attempt
to design a successor to Logo, capital
izing on all we had learned using Logo
with children and teachers. Both Logo

Spring 1999

FEATURE ARTICLE

Twenty Reasons Why
You Should Use Boxer
(Instead of Logo)
by A.A diSESSA

and Boxer aim to provide the simplest
but most powerful and unconstrained
computational resources possible to
"just plain folks" in the service of en
hancing learning. Both projects believe
that programming, in some form, is
essential in truly liberating the
computer's power as a learning tool.
Differences at the level of philosophy
exist and are interesting, but are not
the main issue here.

The differences between Logo and
Boxer that are relevant to this paper
are technical. That is, they have to do
with the designed structure of the Logo
and Boxer environments and their as
sociated programming languages.
"Technical," however, does not mean
either esoteric or unimportant. To go
back to the beginning, the difference
between text and a programming en
vironment are "technical" in exactly
the same sense. But, I think everyone
would agree that the difference be
tween what you can say and do with
text versus a programming language is
substantial.

Logo's principal claim to fame was
that it made programming easier and
more accessible. It basically adopted a
subset of the capabilities of a "difficult"
programming language, Lisp, and
changed the way people saw and used
that environment. For example, Logo
had a more friendly syntax. In view of
this central and well-advertised ad
vance, it is stunning that the basic form

LOGO EXCHANGE

of Logo's presentation to the user has
remained essentially identical from the
late '60s when it was originally de
signed. This lack of change is even more
surprising in view of two other facts.
First, Logo was plainly constrained by
the teletype terminals that it originally
used. There was no choice except us
ing characters, words, and lines as ba
sic structuring devices. Bitmapped
graphics and even mice were yet to be
come serious design possibilities. Sec
ond, I believe it was evident even in
those days that the restricted structural
possibility afforded by a "typewriter"
interface caused difficulties. I wrote a
memo to the Logo Group in the late
1970s about these limitations and made
some suggestions that, eventually, be
came Boxer. By now, I believe these
limitations are even clearer and empiri
cally verified, especially in contrast to
Boxer. I'll make reference to many par
ticular limitations and some of the data
that confirms these in the remainder of
this paper.

I don't mean to imply that Logo
hasn't changed in its nearly 30-year his
tory. But, the changes are not, for the
most part, in its basic structure. Logo
has not taken advantage of dynamic,
graphical display possibilities in its
core. Programs are still words in se
quence, broken into lines, and so on.
Instead, changes have included having
some internal application-like features
(draw program features), some canned

7

interface "widgets" (like buttons and
sliders), and most notably, parallel pro
cessing. Even the latter significant
change, however, involves no change in
the basic presentation of the language
only a new command, launch. 1

On this background, let me sketch
20 reasons why you should use Boxer
(instead of Logo).

1. Lower Threshold
Teachers who have taught both Logo
and Boxer tell me that the first stages
of introduction to Boxer invariably go
more quickly and smoothly. One of my
most reliable sources (and, at times, a
friendly critic), who is a high school
teacher and long-time Logo user, tells
me that he can now get through his
basic introduction to programming in
more like two days compared to two
weeks with Logo. This includes learn
ing commands, procedures, iteration,
and at least a little about variables.

A second measure of lower thresh
old is how long it takes for students to
get into really interesting, self-directed
projects. A benchmark for me in this
regard also comes from the above-men
tioned teacher. In a mathematics
course that lasted only 10 weeks, he
brought a not-particularly brilliant
class from the state of being non-pro
grammers to where they each produced
both cogent and personally fulfilling
projects. This is significantly beyond
anything I have seen accomplished
with Logo.2

to S(JIII'"E
repS 4 (fd 50 rt 901
El'l1

n!I]EIIt 41 fd 5ll I
rt90

Figure 1. A square procedure
definition in Logo (top) versus a
visually transparent Boxer
presentation (bottom).

8

This is not magic, but it results from
some basic properties of Boxer. For
example, procedures appear as visual
entities, boxes. Consult Figure 1. Little
simplifications, such as extremely clear
visual boundaries, make a lot of differ
ence to beginners. You don't have to
learn the special meanings for a little
piece of text, end, as the boundary of
an object. In Boxer, you can't have a
beginning (to ...) without an end,
and you can't misspell syntactic bound
ary markers.

Logo has always, unfortunately, dis
tinguished the mode of creating pro
cedures from the mode of executing
them in one way or another. Early in
Logo's development, you entered a
special mode for procedure creation
during which you couldn't execute.
Later, there was a separate editor,
which became the "flip" side of the
page, or the procedures page. All of
these separations cause difficulties,
especially for beginners. Most notably,
you cannot easily-or at all! -see the
effects of a procedure at the same time
that you look at its form. This makes
learning by inspecting difficult; you
have to flip back and forth between
different areas to see a procedure and
its effects. In addition, it rules out a
mode of learning by interacting with
pieces of code, which is very powerful
and characteristic of Boxer. For ex
ample, if you look at a line of code in
Boxer and wonder what it will do, you
can just double-click on that line, and
it will be executed. This also turns out
to be an extremely powerful debugging
technique. 3 If something goes wrong,
you can just step through the process
by executing one line at a time. That
is, the inherent inspectabiliy of Boxer
is extended with "pokability." With
out easy visual interpretability,
inspectability, and pokability, is it any
wonder that Logo beginners fre
quently just throw away old proce
dures without re-using them (rather
than figuring out what they do)? Or
they simply start again with a new
procedure definition instead of debug
ging what exists.

LOGO EXCHANGE

...... ::x
rake "x 35

Figure 2. Contrasting Logo
interactions with a variable via a
conversational paradigm (left),
versus direct visibility and access
(right), characteristic of Boxer.

Variables are well-known to provide
difficulties for Logo beginners. The
problem is that Logo variables are very
abstract. In Boxer, in contrast, vari
ables are boxes just like procedures
(although they are different kinds of
boxes; procedures are doit boxes, and
variables are data boxes). So, in Boxer
you can literally see variables. Consult
Figure 2. You can see their current val
ues, and if a procedure changes a vari
able, you can see that change. Further
more, if you want to change a variable,
you can just edit its visual presenta
tion as if it were plain text.

Logo never lets you see a variable
only its value-and you must interact
with it "conversationally" rather than
directly.4 To see its value, you must ex
ecute a command like print : x, and
to change it, you must similarly execute
a command. Actually, Boxer is ex
tremely unusual in this regard, as-as
far as I know-no other "serious" lan
guage provides an interactive notation
(you can edit it directly!) for the fact
of a variable having a value, as opposed
to a notation for the fact of changing a
value or the fact of doing something
with it. Spreadsheets are another con
text that shows the power of concrete
ness (visibility) and the ability to
change "variables" (cells) directly.

2. See for Yourself
The reasons that Boxer is better for
beginners, such as those explained
above, are not accidental or particular
to the way we chose to design a nota
tion for procedures and one for vari
ables. Instead, these are part of a larger
plan, which accounts for very many of
the advantages that Boxer has over Logo

Vol. 17 I No. 3

and other programming environments.
In particular, there are two overarching
principles that guided Boxer design.
First, there is the principle of naive re
alism {or the principle of "concrete
ness"). Here, the idea is that the user
of a computer system can pretend that
what appears on the screen is the com
puter system. That is, you don't need
to do a lot of mental work interpreting
an abstract presentation that relates
only indirectly to the fact of the matter
(as, for example, imagining something
called a variable that is changed or ac
cessed by commands). Instead, naive
realism means that everything in the
system must have a visual presentation
that allows easy interaction with it, in
cluding creating it, changing it, moving
it, and deleting it.

One of the wonderful successes of
Logo was that it developed the turtle,
whose spatial state was always visible
for learners to contemplate. So, the
practice of semi-programming was
born. Students can execute commands
one at a time and inspect and think
about the state of the world thus cre
ated. This is a tremendous boon to be
ginners as it frees them from the need
to imagine a complex state created in
the midst of a complex process. But,
because Logo has no principle of naive
realism for computational objects, as
opposed to for the turtle (or other
graphical "side effects" of computa
tion), semi-programming can't work
to support more abstract programming.
In Logo, semi-programming can't work
where only a set of variables are chang
ing. With Boxer, students can simply
watch variables change just as they
might watch a turtle. They learn "ab
stract" programming nearly as easily
as they learn turtle programming. This
is not just an advantage for beginners;
it also helps experts watch their pro
grams in action, and to debug them.

The second powerful and general
principle of Boxer is the spatial meta
phor. You can think of this, once again,
as extending an excellent idea of Logo
to apply more broadly. In this case, the
Logo turtle allows students to use their

Spring 1999

very well-developed spatial understand
ing to become engaged in programming.
Every child intuitively understands
certain spatial relationships. Children
can instantly see if the turtle is in the
correct place, facing in the appropriate
direction. And they can reason through
what they want to have happen next.
But, the turtle is not computational
structure, per se. Boxer uses space and
spatial relations systematically to rep
resent aspects of "abstract" computa
tion. In particular, Boxer has a wonder
fully transparent hierarchical structure
of boxes inside of boxes that represents
huge ranges of computational mean
ings.

rnowerr

Boxer's spatial hierarchy represents
literally dozens of computational rela
tionships in a way that we have found
is very natural. Look for continuing
examples in the sections below. The
spatial metaphor has proven much
more successful than even we initially
believed. For example, we thought
people might get lost in a maze of boxes
inside other boxes. One of the first
utilities that we designed before we
tried Boxer out with people was a map
utility that showed the structure of
your universe and provided a "you are
here" indication of your current loca
tion. As a matter of fact, this proved
completely unnecessary. After just a

Figure 3. Boxer uses its natural hierarchical structure of boxes inside boxes
to represent important computational semantics. On the Left, a procedure,
f1ower, contains its subprocedure, petaL On the right, a subsprite,
smi1e, behaves as part of its supersprite, head, when the supersprite is
moved, but it can also be independently addressed.

For example, procedures inside
other procedures represent the "be
longing" of a subprocedure to a proce
dure. See Figure 3. Similarly, the boxes
that represent turtles {we call them
sprites) may be nested one inside the
other. A subsprite thus created moves
with its supersprite when the
supersprite moves, but moves indepen
dently within the frame of the
supersprite when you direct com
mands to the subsprite. Subsprites
make excellent components of objects,
for example, arms or eyes of a person
or animal that you want to have move
with the complete animal. Yet they can
also have independent actions, like
raising an arm or winking an eye.

LOGO EXCHANGE

very little experience with Boxer, stu
dents never get lost. Better said, if they
get lost, they understand how Boxer is
organized well enough to find them
selves without difficulties.

3. Higher Ceiling
In addition to a lower threshold, Boxer
provides a higher ceiling than Logo.
This is. in part, a difference of orien
tation. Logo was designed for children.
But Boxer is designed to grow with
children into adulthood. One of the
disconcerting things I found with Logo
was that teachers learned it only for
their students. It didn't really serve any
of their adult purposes.

Simply put, students who stick with

9

Boxer get a lot further than those who
continue with Logo. I have several
benchmarks. First, in all of our expe
rience with Boxer, essentially every
student in courses that last more than
a few weeks has managed to produce a
cogent project at the end of that time.
This was not my experience with Logo.
In addition, exceptional students have
substantially surpassed what appears
possible with Logo. For example, in a
Boxer class we gave, a pair of sixth
grade students who were certainly
clever-but clearly not prodigious
managed to create a huge "graphing ad
venture game." The game presented
players with dozens of graphs to inter
pret, kept score and had included help
and a "reward" video game to play.
This program contained hundreds of
boxes and was larger than the average
construction I program myself in
Boxer. Exceptional high school stu
dents have created immensely complex
programs. One example was a "molecu
lar toolkit" that contained tools to ana
lyze organic molecules, to display vi
sual presentations of their structure
(given only their chemical formula), to
name them automatically, and so on
(Ploger & Lay, 1992).

Some of these accomplishments, and
the higher ceiling for Boxer generally,
come about for completely obvious rea
sons. Boxer provides many more ad
vanced facilities compared to Logo, in
cluding different styles of programming
(see below), a much more flexible and
reconfigurable environment, advanced
structures (e.g., compound graphical
objects, the subsprites described briefly
above) and so on. I will describe some
of these in more detail in subsequent
sections. However, other reasons that
Boxer has a higher ceiling are more
subtle, although equally important.
These reasons are what I wish to dis
cuss in Boxer advantage No.3.

I already said, but it bears empha
sizing: The characteristics of Boxer,
naive realism and spatial metaphor,
which, in part, make it comprehensible
to beginners, also help relative experts.
Inspectability and pokability help one

10

understand and manage complex pro
grams, as well as understand how
simple programs are created. It's a lot
easier to inspect the state of your pro
gram by watching its variables than to
try to imagine what is going on. And
executing a little piece of a large pro
gram is such a powerful part of debug
ging that making that very easy-as it
is in Boxer-pays huge dividends.

A problem that occurs with Logo is
a set of plateaus that appear regularly
with respect to structured program
ming. First, students hardly ever begin
programming in a structured style on
their own. Instead, they produce "spa
ghetti code" programs, if ever they cre
ate large ones. This is not a cognitive
limitation or even bad instruction (at
least, not entirely), but it is a case of
the expressive environment not facili
tating effective organization. Contrast
the visually clear capability of Boxer to
put local procedures and local variables
directly inside a superprocedure.
(Again, consult Figure 3.) In contrast.
Logo subprocedures at best follow their
superprocedure, and there is no auto
matic and evident visual connection.
Complex procedures with many
subprocedures tend to become a disor
ganized jumble, unless one takes great
care and invents ways of associating
who belongs to whom. Obviously, what
goes for local procedures also goes for
local variables-except, arguably, the
situation is even worse.5 Again, you

must use a "conversational" technique
of declaring a local variable, rather than
just putting one where you want it.
And if a subprocedure calls a local vari
able that is not in that subprocedure,
you have to do a complex process of
guessing and finding superprocedures
that call your subprocedure to see
which one contains the local variable.
In Boxer, you can often just scan visu
ally outward to find the superior box
that contains the relevant variable.

We find that Boxer beginners often
begin "accidentally" to structure code
reasonably without instruction. For
example, they find themselves wanting
a subprocedure in the middle of writ
ing the code for a superprocedure, so
they just interrupt writing the main
procedure and write the subprocedure
right there, within the superprocedure.
Accidentally doing the right thing is a
great, facilitating effect of well-designed
environments. Similarly, students au
tomatically assume that different box
environments are independent. (Boxes
can contain entire environments. and
it is not uncommon to have several such
box-environments in your Boxer world
at the same time.) That is, they expect
the procedures and variables in one
box-environment to work indepen
dently of others. This happens to work
just fine, even before we teach students
how variables "scope."

Of course, accidental facilitations
only go so far. To manage really large

set-pen-color color
repeat 2

set-pen-color color
repeat 2

Figure 4. (a): A procedure contains a subprocedure, which is shrunken to hide
its details. (b): Clicking on the sub procedure opens it to reveal its contents.
(c): If the contents are complex, the user can click to expand the subprocedure
to full-screen size. A click to shrink the box brings one back to (b).

LOGO EXCHANGE Vol. 17 I No. 3

-

and complex programs, you have to do
some work. Boxer provides several re
sources for effectively managing com
plexity. In the first instance, boxes
within boxes are a great organizing fea
ture that is automatically provided and
easy to understand. In order to further
control complexity and facilitate view
ing a complex environment, the visual
presentation of boxes is easy to manipu
late. Any box can be shrunk to a small,
gray box, hiding its contents and mak
ing more of the surround visible and
easy to see without distraction. Consult
Figure 4. Or, if a box is complicated and
the student wants to focus his or her
attention right there, the box may be
expanded to full-screen size, effectively
hiding the context. It takes a little prac
tice to use these capabilities effectively,
but, in our experience, they are easy to
understand, and not much direct in
struction is necessary.

In addition to controlling complex
ity by adjusting the visual presentation,
Boxer allows a wide variety of ways to
distribute code into semi-independent,
meaningful units. For example, since
visible graphical objects (Logo turtles
or Boxer sprites) have a directly
inspectable and modifiable box form,
you can put code for behaviors that
belong to that sprite right inside him.
If you want a turtle to dance, you can
(and probably should) put the dance
procedure right inside him. Then, if he
dances funny, you know where to look.
I will discuss other methods of mean
ingfully distributing code to make pro
gramming and debugging easier in
some other sections.

The final method that I will men
tion by which Boxer facilitates the con
struction of large programs also comes
back to the fact that it has such a use
ful, spatial presence. In particular, in
order to join two programs, or even two
complete environments, the first step
is usually trivial. Simply cut and paste
the pieces so that they appear together,
in the same place. Then, you can gradu
ally integrate the procedures of the two
parts so that they work together flu
idly. I first noticed this process in the

Spring 1999

construction of the graphing adventure
game by the two sixth-grade students,
mentioned above. One of them had a
complete and working "video game" in
a box, and wanted to make it part of
the graphing adventure game. The first
step was trivial. Just cut the video game
box and paste it into the middle of the
graphing adventure box. Gradually, the
two young programmers integrated the
code so that, for example, you could not
enter the video game box before you
managed successfully to complete some
number of graphing challenges. They
also added code so that your score on
the video game affected what happened
on following graphing challenges. 6

4. Structure, Structure,
Everywhere
In the prior sections, I emphasized how
the spatial metaphor and Boxer's prin
ciple of naive realism provide advan
tages for beginners and also for more
advanced Boxer users. In this section,
I want to show just a little bit of how
these same features provide ease of

example, specifying in advance that
you needed only a sequence of three
parts in your list. Logo, essentially,
made no changes in this structure.

Boxer, on the other hand, was
driven by what is easy to see and ma
nipulate with modern display technol
ogy. The basic data object is a box, con
taining arbitrary elements in a
two-dimensional display, like a sheet
of paper. The two-dimensionality of
data boxes gives one tremendous flex
ibility in considering how you want to
configure and think of your data. First,
you can, of course, think of your data
as a list. a sequence of items reading
left to right, top to bottom. But you can
display your list horizontally or verti
cally, or mixing the two by grouping a
number of elements on each row. Or,
you can consider your box of data to
be an array, and use array indices to
fetch or to change parts of it. Or, you
can ask for elements of your box, or
change them, one row or column at a
time. Figure 5 shows some examples
of different organizations of box data.

lwrtic:allist 1

il

~~

llisbi on I'VW!ii 1
I yau hi! shl! i t
eat ell: tlr1171
a tiE

rilftt
I Gille
bEtter
wrticilllly

app e PM" binnl

itanl I i st II itanl verti cilll _I i st 11 row3 li st5_on_r0111i II row I arriPJ
cniLJW 2 arriPJ

(t'll'flllt: a: Raw 2, CnlliW 3 rl thl! arrii'J' _,) RC 2 3 arriPJ

Figure 5. Some different arrangements of Boxer data and, below each, Boxer
expressions selecting a part of the data.

construction of, and wide flexibility in,
the data structures that one can de
velop in Boxer.

Logo's data structures are patterned
on Lisp's, which in turn emerged from
what is easy for computers to do. In
particular, Lisp capitalized on the idea
of a linked list, where each data item
has a unique successor. The innovation
of Lisp over other programming envi
ronments was that each element in the
linked list could be an arbitrary object.
for example, another list. And, one did
not have to reserve a fixed amount of
space associated with each object, for

LOGO EXCHANGE

Boxer allows much greater flexibil
ity than Logo in terms of what kinds
of things one can place inside data. In
fact, Boxer places no restrictions what
ever on what you can place in a data
object. So, for example, Figure 6 is a
record in a database that may easily be
constructed just by making boxes,
naming them, or cutting and pasting
anything you can find in Boxer. The
named subboxes can be addressed by
name. For example, if this entry has
been assigned to the variable entry,
then entry .last_name provides
access to the last name. Notice also

11

i
]
I

l

that pictures (graphics boxes) can be
contained in this compound data ob
ject, and also colors (appearing as col
ors, not as a name or numeric code).
Finally, procedures are also first-class
objects, and my favorite fractal proce
dure can, like anything else, be placed
in a compound data object.

Let me give a couple of specific ex
amples. The first relies on the fact that
boxes saved as files can remain
present in any Boxer environment.
So, when you open a Boxer file, you
might see a number of subfiles scat
tered through it. These subfiles ini
tially appear as black boxes, and they

~-) ~·"'-•1
... ...,. (d Sesa)

fav;o~r.~te~co;;:;l::;:o;r :;l~;.;;llfa~v-::o:-=ri!Lte=-=rr:-=a-=-ctc::aTI --,1 ---J

Figure 6. An entry in a database can contain any kind of Boxer data,
including pictures and procedures.

read themselves in whenever you
click on them to open them as you
would any closed (shrunken) box.
You could type whatever annotation
you want around these files, and thus
create a well-documented "directory"
structure. The point of this example
is that by combining generic Boxer
structure of boxes and text, you can
create very many kinds of organiza
tions to suit particular purposes-in
this case, a personalized file organi
zation. 7

~ld ~----------------------~
A s ert ence: @I ert ence
An ari nil (i n a box:) : ! ari 1111

(Here is a tlil!iebilll: ! p ctlre)

A final example shows how the flex
ibility you get when every aspect of your
environment is computational can pay
off in surprising ways. During an early
attempt to create on-line (Boxer) docu
mentation for Boxer, the project coor
dination went somewhat awry. Mul
tiple people created multiple versions
documenting the same command or
structure, and different people used dif
ferent formats for the units of documen
tation. In order to straighten this out. I
just collected all the pieces of documen
tation and dropped them into a single
box. Then I used a little search program
that I had on hand to collect related
documentation elements so that I could
select the best, or cut and paste best fea
tures. As I used a documentation ele
ment, I just deleted it from the box-da
tabase. In a similar manner, when I
finished the complete, hierarchically
organized documentation of Boxer, I
wrote a simple program to prune out
all the details, leaving a nice hierarchi
cal index. Try to do either of these
things in any ordinary programming
environment, including in Logo.8

6. Build It Yourself
List processing is another area with
which many people never achieve
competence using Logo. This is a place
where Boxer made a small innovation,
which, nonetheless, has proved very
valuable in eliminating a plateau in
learning that was evident with Logo.
Instead of a fairly complicated collec
tion of ways of assembling and disas-

A sertence: I baK, therefcre I iiRI
An ari n11 (i n a blJx): r::::1

~

5. A REAL Work Environment
A critical test for a life-long learning
environment is not whether it is a nice
place to visit, but whether you would
like to live there. Boxer is designed to
provide a flexible and practical work
environment in which you can collect
and integrate a set of tools and infor
mation to suit particular needs. Be
cause Logo does not have the flexible
structure of text anywhere, organized
by boxes inside boxes, it lends itself
more to a presentation environment
for a single program. For example, in
Boxer you can collect a number of box
tools (see reasons 8, 10 and 15. below)
in the same place and surround them
with working data. The tools can use
and operate on surrounding data. You
can write notes to yourself about what
you want to do, which is, what I call
emblematically, "scribbling on the
desktop.~ Indeed, because everything
in Boxer is computational, you can
write a little program to re-organize
your "desktop" as easily as you could
write a program to manipulate any
other kind of data.

Figure 7. Top: A set of variables. Bottom: Build takes a spatial template and
fills in parts marked with ! And @.

12 LOGO EXCHANGE Vol.17 /No.3

sembling compound data objects, list,
sentence, fput, lput, etc., Boxer has
essentially just one command. Build
takes a spatially-organized template as
input, and creates an output of exactly
the same form, except that every part
of the template preceded by an @ is
replaced by the contents of the box that
follows @, and, similarly, I means to
insert the full box referred to at that
point. Consult Figure 7. Removing two
levels of impossibility (lack of graphi
cal data, lack of two-dimensional struc
turing), the equivalent Logo expres
sion is still very difficult to produce.
Try it!

Buil.d is one of the areas that has
had independent and convincing em
pirical study. A study by two Euro
pean researchers (Schweiker &
Muthig, 1986) showed that learners
achieved competence with buil.d
about three times as quickly has the
equivalent constructs in Logo. And,
after achieving competence, subjects
were about three times as fast to cre
ate fairly complex objects, and to de
bug faulty expressions. This demon
strates once again the power of visual,
concrete structures, as opposed to in
visible processes that you have to
imagine.

7. Port Yourself to Infinity
Let's return to some parts of Boxer that
were designed for more mature users,
rather than for beginners. A port is
quite similar to a regular box, except
that its insides are identical to some
other box, called the port's target. If
you change either the port or its target
in any way (editing or via a program),
both are instantly changed. So a port

Abac wth a port ta itself inside

A bac wth a port ta itself inside

A lllllt wth a port to itself inside

[i]
~

~

Figure 8. A box containing a port to
itself is an infinite structure.

Spring 1999

provides access to a box that might ex
ist remotely from the port, say, deep
inside a complex program.

Let me start with a little "parlor
trick" one can perform in Boxer,
which, nonetheless, suggests the power
of ports. Suppose you have a box con
taining a port to the box, itself, that
contains the port. What you see inside
the port will be the box, which con
tains the port, which contains the
This is an infinite structure (Figure 8)
that can be created in Boxer with a few
keystrokes and mouse clicks. You can
even "climb down" far into the infinite
structure, in case you believe it is just
a pretty picture.

Ports make great user interface de
vices, in addition to their numerous
programming uses. For example, as
suggested above, you can provide easy
access (both for viewing and for chang
ing) to variables or programs whose
natural place might be otherwise bur
ied deeply within the box hierarchy.
Ports also make excellent hypertext
links. You can directly see and use (or
change) things that don't exist locally.
Boxer is a hypertext environment, the
first hyperprogramming environment,
a colleague once said. One of the built
in Boxer uses of ports is that error
messages, when possible, include a port
to the offending procedure. That means
you can frequently correct errors like
misspelling or missing inputs immedi
ately, without flipping the page or wan
dering around to find the procedure's
definition.

Ports implement data sharing in a
natural way. For example, if you want
to have a database where two people
share the same phone number (and
changing one should change both),
then ports are the right thing.

Unsophisticated programmers can
skip to the next section at this point.
This is for relative experts: Here is a
somewhat esoteric but extremely pow
erful use of ports. If you name a port
to a procedure instead of the procedure
itself, then you get the effects of "lexi
cal scoping." That is, when you use the
procedure by name, any variable names

LOGO EXCHANGE

used inside that procedure refer to vari
ables accessible from the location of
procedure definition, rather than from
the place the procedure is executed.
Lexical scoping in this way is a natu
ral consequence of the meaning of
ports (which I won't explain in detail).
If you don't know about the great de
bates about the merits of lexical ver
sus dynamic scoping (dynamic scoping
is the usual way Boxer scopes, and the
only way Logo scopes), suffice it to say
that both have their advantages in dif
ferent situations. In particular, lexical
scoping is superior in that it always
does the same thing, in contrast to dy
namic scoping, which accesses one
variable or another depending on
where the procedure that contains the
variable happens to be called.

Finally, ports implement "object
access" in Boxer. Logo really doesn't
have objects at all in that you cannot
tell the difference between a data ob
ject and a copy of that data object. If
you don't know much about these is
sues but wish to understand their im
portance, consult Abelson & Sussman
(1985).

8. Beg, Borrow, or Steal
Boxer was not designed, particularly,
to be a collaborative environment. But
I have been surprised to see how much
better collaboration has gone in Boxer,
compared to my experience with Logo.
During the several years Hal Abelson
and I ran an NSF-sponsored summer
program for bright high school stu
dents, one of the constant difficulties
we had was that, typically, one student
always took over the programming for
a collaborative project. Other students
became very dependent on the "pro
grammer" of the group, since they
couldn't even use the program very
well without him.

Our experience with Boxer has been
the opposite. Again and again we have
seen students, even students of very
different programming capabilities,
working extremely well together. For
example, we have "exit video tapes" of
students from a summer program

13

----------------·- --~- ~~-------------------------

course in Boxer where each student is
interviewed about the project. Even
quiet students produced excellent ex
planations of how the projects were
programmed, and, frequently, they
would stop in mid-stream to make a
small edit or two to improve perfor
mance.

In retrospect, some of this improved
collaboration comes from evident dif
ferences between Boxer and Logo-in
fact, from differences I have already
discussed. When a program is easily
inspectable, pokable and changeable, it
is much easier to share. Anything you
miss in the construction can be made
up by playing with the code. Review
ing video tapes of students collaborat
ing reveals another very important
mode of keeping everyone in sync.
Boxer's very rich visual presence on
the display screen means that it is easy
for students to configure the screen in
order to point and explain what a pro
gram does. "Look, this says to increase
the variable X each time. Watch X while
I execute that line. See, this procedure
calls that one; here, let me open (ex
pand) it."

9. Reconstructible Interface
This set of features is for more ad
vanced users, or for teachers and de
velopers to prepare easy-to-use environ
ments in Boxer for less sophisticated
students. Logo has innovated, just a
little, with respect to allowing the user
to customize and reconfigure its own
user interface. For example, you can
create buttons and sliders to begin ac
tivation of a program or control a vari
able. Boxer takes that a step further.
Rather than providing a small set of
canned elements, Boxer provides re
sources to create these sort of things.
For example, you can redefine what it
means to click the mouse button any
where in Boxer. You can define what a
mouse click means on a particular
sprite, on a particular graphics box, in
a particular box, or on all sprites and
graphics boxes, etc. You can similarly
define what keystrokes do-either
everywhere, or in a particular place.

14

The mechanism for doing this is
really very simple. Every user interface
action executes a procedure of a cer
tain name. Clicking the mouse in a box
executes mouse-cl.ick. Clicking on
a graphics box or on a sprite executes
mouse-cl.ick-on-graphics, or
mouse-cl.ick-on-sprite. Ifyou
define a new procedure by that name,
then it will be executed instead of the
default Boxer action within the box in
which you define that new procedure
(and also in all subordinate boxes that
don't have their own versions of that
command).

To make a box that serves as a but
ton, you just define a mouse-cl.ick
procedure in that box. Another simple
feature of Boxer allows you to make
your button "pretty." If you define a
graphics box called boxtop, then
when you shrink the box containing
boxtop, it appears as the graphic con
tained in boxtop. So, a pretty button
is nothing more than a shrunken box
with a mouse-cl.ick procedure and
a boxtop image inside it.

These resources make it easy to cre
ate many kinds of interface objects, in
addition to buttons and sliders. One of
the advantages is these are all easily
inspectable (to learn how they work)
and, of course, changeable to suit your
particular purposes. Boxer comes with
some sample objects, including buttons,
sliders, pulldown menus and "clickers."
Clickers, in fact, are one of my favorite
interface objects. They look like (on)
or like (off). If you click on them, they
reverse their state. You can distribute
clickers in the midst of code in order to
allow easy turning on or off particular
segments. I use clickers all the time as
part of the user interface of micro
worlds and tools to turn various op
tions on or off. Mixing code, data, and
interface objects like clickers is a hall
mark of Boxer and impossible in Logo.

10. First Class,
Interactive Objects
The generalization of clickers turns out
to be one of the most powerful kinds
of objects in Boxer. You can make in-

LOGO EXCHANGE

teractive objects that respond to mouse
clicks and other interface actions, and
that have the following properties:

a) They have all their "works" in
side, so anyone can cut, copy and
paste them anywhere work needs
to be done.

b) For the same reason, they can be
opened to inspect them to see
how they work, or to modify and
extend them.

c) They can be used as part of a pro
gram; just put one in the midst
of code in an appropriate place.

d) Similarly they can be used as in
puts to procedures, or they can
be created as outputs from pro
cedures. The latter makes it easy
to create procedures (which I call
"factories") that create special
ized interactive objects and re
turn them directly to users to be
cut and pasted where they are
needed. For example, you can
make a button factory that re
turns a fully functioning button
to your specifications. 9

Objects that can be placed in a data
structure and can be used as inputs and
outputs of procedures are called "first
class" objects in the parlance of com
puter science. Boxer is almost alone
among computer languages in allowing
first class objects that are both graphi
cal and interactive, in addition to fully
functional in the language. Logo has no
means to redefine interaction, and
graphical objects can't exist in data or
as inputs and outputs of procedures.

Figure 9 shows two interesting in
teractive Boxer objects. The. first is a
vector that you can control by dragging
the arrow tip of its graphical presenta
tion around. On the inside of the vec
tor are its coordinates, which you can
set by hand or by program. Vectors can
be added, as in add vectorl vec
tor2, which returns the sum vector.
(If you don't understand vectors, for
now just realize they are powerful
quantities representing things like
force, velocity, and acceleration in phys-

Vol. 17 I No.3

il
1uenotypq jpnenotyt:J!

~ l~·(oiDI'I
l ~em tU1e J c~iz·) r-col·~)

Figure 9. A vector and its flip side (Left); a "scat" and its flip side (right).

ics.) In addition, you can command b) All those attributes are directly
sprites to move with the speed repre· inspectable if you "flip" the
sen ted by a vector, and simultaneously graphics box to see its "logical"
you can change the vector to see how rather than graphical side. This
that affects the motion of the sprite. is just the principle of naive real-
One of the nice things about Boxer vee- ism. If there is a computational
tors is that they are so useful and so structure, you should be able to
much fun in creating and controlling see and modify it. Of course, you
motion that children spend a lot of time can name sprites in the same way
programming with them. This leads to you name all boxes.
a lot of learning of things that are usu- c) You can put as many sprites as
ally considered "advanced." Students in you want in a graphics box. You
one sixth-grade experimental class we can even have a program add new
ran learned about vectors and motion sprites.
in this way (diSessa, 1995b). d) You can easily add new proce-

The second graphical, interactive dures or attributes to any sprite
object in Figure 9 is a creature called a or collection of sprites. In Logo,
scat. The insides of the scat include a there is no logical (as opposed to
representation of its genotype along graphical) representation of
with a computational version of its turtles, so this is impossible or,
phenotype. Students can play with at minimum, awkward.
changing the genetic characteristics of e) Sprites are sensitive to mouse
the scat, and teachers or students can clicks, as explained above, so you
develop simple programs to experiment can define their behavior when
with breeding scats. clicked.

11. Can Your Turtle Do This?
Boxer turtles (sprites) have a number
of advantages over Logo turtles, some
of which are already apparent, above.

I 1st National Bank 1

12. Skeletons in the Closet?
Because Boxer makes things so visible
and present, we have had to be some
what inventive about allowing people
to put things out of sight when they
don't want to see them. One of the
chief ways of doing this is with clos
ets, which are part of every box in
Boxer. Closets may be opened or closed
at will. For example, when you look at
a sprite (in its logical presentation),
you see usually only the most-used at
tributes. But in the closet of the sprite,
you can find all the other attributes.
Similarly, if you look back at vectors
and scats, you see only the most nec
essary parts. The rest is accessible in
their closets.

A closet is an excellent place to hide
the works of a rnicroworld that users
will ordinarily not need to see or
change. Closets are a good place also
to hide things like boxtops and key
and mouse-redefinitions for particu
lar boxes.

13. Object-oriented
Programming

Boxer allows other paradigms of
programming, in addition to the usual
procedural paradigm supported by
Logo. This and the next section very
briefly treat two other paradigms.

In Logo, you can ask a turtle to do
something. But, it's awkward, at best,
to teach a particular turtle new tricks,
and very difficult to add new attributes
to it. Most distressing, turtles are about

a) In addition to all the usual at
tributes-shape, x andy coordi
nates, heading, pen-width and
pen-color-Boxer turtles have a
couple of other handy attributes.
These include an overall size pa
rameter and a home position
where the sprite goes when you
clear the graphics box in which
the sprite resides.

ilik 1st ... i en~ 1:1a11c: I I - - tri:mfer 129 from aqr to: IW!I i ~

Spring 1999

Figure 10. A bank has Local data, knows how to do things Like transfer, and
can be asked to perform these functions.

LOGO EXCHANGE 15 I
j

I
~l

I

j
1

:_j

the only thing you can ask. In Boxer,
you can ask any data box to do things,
and, of course, you can fill that box
with whatever local data and proce
dures you find convenient. Thus,
Boxer gets most of the important fea
tures of object-oriented languages like
Smalltalk and Object Logo, but in a
very concrete, spatial-visible way. 10

Object-oriented programming, using
objects and messages, has a number of
advantages over plain procedural pro
gramming. First, it is a better, more
modular organization of data and pro
cedures to have meaningful chunks of
them grouped together. It leads to sys
tems that are easier to understand, and
systems that are easy to extend, even
if you don't understand everything
about them. As important. objects are
the natural way to think about and
model many physical situations. Crea
tures running around a graphical dis
play (sprites!) are one notable example,
but there are many others.

Figure 10 shows part of a bank ob
ject. Banks, of course, know how to do
things like deposit, withdraw, and
transfer among accounts.

14. Activation-oriented
Programming
Having a program automatically ex
ecuted on certain conditions is a very
useful way to program. You don't have
to explicitly write the action and its
conditions into other code that may
have nothing much to do with it. For
example, you may want to update some
display any time a particular variable
is changed. The display may just be a
graphical presentation of the variable,
say, a thermometer that shows a tem
perature variable. You don't want to
have to put the graphic-changing pro
cedure in every possible place where
the temperature variable may be
changed. Another example of activa
tion orientation is a spreadsheet. If you
change a cell, the recompute function
is automatically executed by the very
fact of that change.

Boxer has several activation triggers.
You can set a trigger to execute when

16

any box is changed by the user directly,
or by a program. Similarly, you can set
triggers to execute whenever you en
ter or leave a particular box. Activa
tion-oriented programming is some
times tricky because you can easily
generated surprising and unintended
chains of triggering. That's the nega
tive side of the simplicity of saying
"anytime this happens, also do some
thing else." But, sometimes it is exactly
the right thing, for example: with a
spreadsheet -like uses of boxes; to keep
logical and graphical representations in
sync; or to initiate actions, say, start
ing a microworld box program execut
ing when you enter it. 11

15. Tool Building and Sharing
Building on reasons 8 and 10, Boxer
makes an excellent environment in
which a community can build a flex
ible set of tools to share with one an
other. As developers, my group of
graduate students and I have experi
enced the kind of tool sharing that I
never experienced with Logo. One of
the seemingly little-but, after the fact,
important-features of Boxer is that
tools may exist just as a single box, with
all the "works" inside to inspect,
modify and extend. So, to start, you can
just copy the box and use it directly;
then, as you become familiar with it,
you can open it up to modify and ex
tend. One of the best kept secrets about
tool-sharing in electronic environ
ments is that nobody ever wants to use
exactly the same tool as anybody else.
If it's not inspectable and modifiable,
it isn't much good.

Vectors tumed out to be a marvel
ous general resource for our group
when we designed several editions of
a physics course. First, it is completely
trivial to write simple tutorials that
show how vectors work using work
ing vectors! Second, vectors are great
tools to build other tools and exercise
microworlds. One of many tools we
built in very short order with vectors
was a analysis tool where students ana
lyzed scanned stroboscopic images of
balls flying through the air to find out

LOGO EXCHANGE

things like whether their horizontal
speed decreased (as most students ex
pect) and how the vertical speed be
haves. I already mentioned how vec
tors served as a tool for student
projects.

+

I

[~§_, lbW caldiltar. J a • i:k .. m, iDI lllill l'IIU go!

T 8 9

4 5 (j

I 2 3

0 li lb-ra:ard

dear

Figure 11. A simple Boxer tool-a
calculator. See text for description.

Figure 11 shows a more familiar
tool. It is just a little calculator written
in Boxer. However, unlike a regular
calculator (or a computer calculator!)
it has the following Boxer-like charac
teristics.

a) It is visible. You can see the "in
ternal" registers for both num
bers (result, entry) and for
the operation (op).

b) It is easily modifiable. You can
just edit the keypad; it's just
text. And you can easily add any
functions (to ops and fns) that
happen to be useful to you.

c) It has "permeable boundaries."
You can click on numbers outside
the calculator, as well using the
keypad to enter them. And, you
can "export" numbers to the sur
rounding Boxer environment
(the result->box, etc., com
mands). There is no need to
worry about limits in the num
ber of registers!

d) It keeps a runnable and editable
program (record) as a written
history of the actions you per
form.

e) It is "scriptable." That is, you can
ask it to perform any of its avail
able operations. (Well, maybe a

Vol. 17 I No. 3

scriptable calculator is computa
tional overkill. But. to have a
graphing tool that you can call
upon to draw a graph and return
it to you is a better example of
the power of using Boxer tools as
objects to ask.)

More details about Boxer tools and
toolsets appear in diSessa (1997).

16. Completely Integrated
Mail and Network Browsing
You can send and receive mail from
within Boxer. You can transparently
send and receive not only text, but any
Boxer object, such as a microworld.
Consider how nice it would be to sort
mail in various boxes (with ports in
one place to all your important mail),
or to be able to write a simple program
to sort mail for you. Non-Boxer file
attachments or Web URLs appear as

Spring 1999

icons inside Boxer that you can double
click on to open.

Boxer also has net boxes. These are
almost exactly like the file boxes de
scribed in reason 5. That is, they ap
pear as black boxes, or as their iconic
boxtop, if one is defined. Then, when
you click on them or use them in any
other way, their "insides" are read in
over the network. Net boxes, like any
Boxer objects, have full integration
with the rest of the Boxer environment.
This means:

a) Boxer's familiar and easy-to-use
browsing capabilities also browse
net boxes. The hierarchical struc
ture means it is easier to keep
track of where you are.

b) You can put net boxes wherever
you wish in the Boxer environ
ment. Your whole world is your
browser, and you can even write

LOGO EXCHANGE

programs to manage your net
boxes, if you like.

c) Anything you make can be a net
box or appear in a net box-pro
grams, tools, complete environ
ments. Put a trigger in a box if
you want a moving graphic. (Java
"applets" are a great idea-unless
you want to program them.)
There is no conversion necessary
to put something up on the Boxer
Web.

17. New Sodal Modes of
Materials Development
This section is unlike others in that it
is not a demonstrated superiority of
Boxer over Logo. Instead, it represents
a hope. It represents a hope that the
cumulative effect of multiple advance
ments may change the very presump
tions about who makes what for whom
in educational computing.

17

J

Building particularly on 15 and 16
(which, in turn, build on other Boxer
properties), I have gotten enthusiastic
recently about opening the develop
ment of educational software more se
riously to teachers. In particular, I
would like to engage a community of
likeminded people, including teachers
and students, in the construction of
physics materials for learning. Unlike
almost all prior software, this will be a
flexible toolset that supports a wide
range of ways to use it. Of course, the
toolset will come with pre-made mate
rials and activities, but the fundamen
tal idea is that it is always open to in
novation and change. So many times
in our experience, the real brilliance
of a tool was in a little change a teacher
made to suit her or her students, or a
new idea about how to use an old, fa
miliar tool. Logo might have accom
plished this, but it made it too hard for
teachers to learn to use and modify
tools. It makes tools that are brittle and
isolated, hard to combine. Boxer's
inspectability, pokability, and manage
ment of complexity may just cross a
threshold that allows, not only open
materials, but an open process of cre
ating and experimenting with tools. It
takes a long time and a lot of experi
ence to create a good tool or toolset.
As a developer, I need serious help.

I imagine starting a smallish collabo
rative of folks using, commenting on,
and modifying some of the tools we
have built ourselves to teach physics.
A Boxer activity database should
evolve. Imagine that each tool has built
in net-box links to the activity data
base, and to the current discussions of
core collaborators. I happen to think a
book, or several, will also be necessary
to support practical use.

Can this happen? Can it help pro
fessionalize, empower and re-energize
teachers? Will we really be able to
muster the effort to build curriculum
that is simultaneously effective by any
measure, usable by real teachers, and
also true to the open learning prin
ciples that inspired Logo? Ask me in a
couple of years.

18

18. But What About .•. ?
This section has some brief comments
on some special things Logo (or
Micro Worlds) has that you may think
you can't live without:

a) a draw program: Boxer provides
all the necessary "hooks" to write
your own draw program. There
are two interesting, if very simple
examples distributed with current
Boxer. As the Boxer community
expands-it has barely begun to
mature-you can expect very many
general tools like this to be pro
duced and to become available.

b) buttons and sliders: Again, check
the Boxer demonstration files.
You may find you can't live with
out Boxer clickers. pulldown
menus and the many other kinds
of user interface objects that are
constructible in Boxer.

c) Quick Time movies: Audio-video
boxes should be coming soon, if
they are not already available.
Upgrade your old Boxer.

d) parallel processing: In many in
stances, it is better to retain con
trol of parallel processes in order
to make sure things run in syn
chrony. For example, we fre
quently write programs with
multiple sprites (or other objects)
that are all driven by a tick mes
sages sent from a single control
ler. Boxer has its own parallel
processing system, but we have
not found it useful enough to de
bug it thoroughly. If you need
thousands of turtles and just
can't do with only scores, stay
with StarLogo for now.

Are there any things I envy about
current Logos? Sure. They are pretty,
slick and require less memory than
Boxer. These are things that only com
mercial efforts can manage.

19. Upgrade Your Skills
It's fairly easy to start doing Boxer if you
know Logo. We have been careful not
to change things gratuitously just to be

LOGO EXCHANGE

different. But be warned: It may be easy
to fall into the trap of thinking Boxer is
mostly just like Logo, and to use it to
program just like Logo. As many of the
items and examples above should have
demonstrated, that would be a serious
under-use of Boxer's power. Constructs
like ports, object- activation-oriented
programming, etc., can make things that
are difficult in Logo much easier.

20. It's Free!
See:

www.soe.berkeley.edu/boxer

or send mail to boxer-inquiry@soe.
berkeley.edu.

Conclusion
Logo began with a grand image of the
computer transforming learning from an
often painful, alienating and awkward
process into a more natural-feeling and
empowering one. But, I believe Logo
tripped by not realizing its transitional
nature-born of teletypes and printers.
Instead, it pursued glitz and contempo
rary-looking features rather than chang
ing its infrastructure. This has left users
able to do nice-looking things quickly,
but without the kind of deep penetration
into learning cultures that we need. With
Boxer, we started from scratch design
ing an environment that uses display
technology to make things easier to do
and easier to understand. This paper in
vites you to explore new possibilities. I
have tried to explain what I believe to be
advances of Boxer, and why these could
make a big difference. S.

References
Abelson. H. & Sussman,]. (1985). Struc

ture and Interpretation of Computer Pro
grams. Cambridge, MA: MIT Press.

diSessa, A. A. (1995a). Collaborating via
Boxer. In L. Burton and B. Jaworski
(Eds.). Technology-A Bridge between
Teaching and Learning Mathematics.
Bromley. Kent, UK: Chartwell-Bratt,
69-94.

diSessa, A. A. (1995b). The many faces of
a computational medium: Learning the
mathematics of motion. In A. diSessa.
C. Hayles, R. Noss, & L. Edwards

Vol. 17 I No.3

I

(Eds.). Computers and Exploratory
Learning. Berlin: Springer-Verlag.

diSessa, A. A. (1997). Open toolsets: New
ends and new means in learning math
ematics and science with computers. In
E. Pehkonen (Ed.), Proceedings of the
21st Conference of the International
Group for the Psychology of Mathematics
Education, Vol. 1. Lahti. Finland. 4 7-62.

Ploger, D., & Lay, Ed. (1992). The struc
ture of programs and molecules. jour
nal of Educational Computing Research,
8(3), 347-364.

Schweiker, H., & Muthig, K. (1986). Solv
ing interpolation problems in Logo and
Boxer. In P. Gorny & M. J. Tauber
(Eds.). Visual Aids in Programming.
Heidelberg: Springer-Verlag.

Endnotes
1Actually, there is at least one interest
ing exception. The invention of "pages"
and "flip sides" are directly along the
lines of some Boxer innovations that I
will be discussing. However, pages and
flip sides didn't penetrate the language,
even if they are an excellent innovation
in the environment. It may be surpris
ing, but Boxer's version of these innova
tions already existed when Logo "in
vented" them.
2I am describing the "infinity" class,
whose work and final projects are dis
tributed with the demonstration pro
grams available with Boxer. Go see for
yourself if you believe you could accom
plish the same amount starting with non
programming students!
30f course, executing a piece of code that
depends on a context created by the ex
ecution of other code makes debugging
simply by pointing to an arbitrary line of
code sometimes difficult. However, Boxer
makes some of these cases easier to deal
with in that if you execute an input line,
you get local variables in which you can
insert test values.
4Yes, sliders sometimes provide some of
Boxer's inherent concreteness and vis
ibility. But "sometimes" is a long way
from "always." Consider how often one
wants non-numerical data, and how of
ten a slider is just more work than hav
ing a variable.
5Here is a good little research project.
How many Logo users even know about

Spring 1999

local variables? In Boxer, people begin
using them even without instruction be
cause the idea of putting a variable where
it belongs is so obvious.
6More on this graphing game and how
the students managed to accomplish such
a complex programming feat appears in
diSessa (1995a).
7 A slight modification of this "directory"
idea makes for a very useful organiza
tion for teachers. One can make a file
box with an "auto read" property, so that
it is read in automatically when another
a box containing it is read in. So, a
teacher can put a file box containing a
set of tools inside each student's Boxer
world. Whenever students read their
worlds, they get the teacher's most re
cent set of tools. (When 9 box contain
ing a file box is saved, the subfile box is
not itself saved-only the "pointer" to the
file.)
8The result of this work is, in fact, the
online documentation of Boxer we supply
with the current release. You can look to
see how useful the hierarchical index is,
and recall that it was generated from the
full documentation by a simple program
(which appears elsewhere in the set of
Boxer demonstrations).
9See the button factory in the Boxer dem
onstrations included with the current
Boxer release.

wwhen I first programmed in Smalltalk,
I was terribly distressed to find out that
objects, including graphical objects, don't
"live" in a particular place the way they
do in Boxer. But, Smalltalk didn't have
either the principle of naive realism or
the spatial metaphor to make its objects
easily comprehensible.
11Sprite attributes work in this precise
way! In the closet of each sprite attribute
there is a modified-trigger that changes
the visual presentation of the sprite
when you change that attribute by edit
ing it, or under program control.

Andrea A. diSessa
Graduate School of Education
University of California
Berkeley, CA 94 7 20
disessa@ soe.berkeley.edu
www.soe.berkeley.edu/boxer

LOGO EXCHANGE

Letters to
the Editor

Dear Gary,

I am writing to you as represen
tative of all the people who con
tributed articles about me and my
work to say how touched I was. I
was also stimulated to do a lot of
new thinking and will express
some of it in your columns very

soon.

With warmest colleagial greetings,

Seymour Papert

Dear Editor:

I ~ad with interest your piece
. Loao Exchange entitled "Never
1n o d" d
Satisfied, Only Gratifie an
agree with almost all of it. I was
disappointed, however, when you
failed to mention our book, along
with that of Druin and Sol?mon,
as books that DO NOT lgnore
Logo and research on Logo.

Our book published by ~.l~yn
d Bacon is in its second edltiOn

C~hird in preparation), is entitl.ed
Educational Computing: Leaml~g
with Tomorrow's Tech~~logles
(Maddux, Johnson, & Wllhs) and
contains many references to Logo,
. ludingan entire chapter (chap-
Inc AU .
ter 15) entitled "Logo: mque
Computer Language."

Cleborne D. Maddux, Ph.D.
Professor, Counseling and Educa
tional Psychology. University of

Nevada, Reno

19

Background
John Conway developed one of the first
artificial life activities in the sixties.
Conway's Game of Life simulates the
birth and death of organisms based on
certain rules. The simulation takes
place on a grid and has been imple
mented with computer software.

Computer strategy games use artifi
cial intelligence to simulate computer
players. Computer programmers must
develop artificial players that make in
telligent moves. Sometimes these intel
ligent moves involve complex move
ments such as a dogfight with an
airplane.

More recently, a number of virtual
pet software programs have been de
veloped. One can raise dogs, cats, or
pigs that move around on the computer
screen. One must feed and care for the
pet, or the pet will die.

Virtual pets have moved from the
desktop computer to stand alone de
vices. One branch of computer science
involves the development of computer
programs that simulate life. Computer
software, based on A-life, has been de
veloped to simulate such activities as
bacteria growth, bird flights, and bee
swarms.

20

Simulating Artificial
Life with Logo
by BILL ENGEL AND PAT GREENE

In this article, a logo software pro
gram is developed to simulate a turtle
that wanders around on the computer
screen. This activity could be used by
a mathematics or computer science
teacher in grades 6 through 12. The
teacher could use the suggestions in
this article to help students develop
their own artificial life program.

Why Logo?
Logo is an ideal programming language
for constructing artificial life. In fact,
Logo was developed by Papert, who
was involved with the Artificial Intel
ligence Laboratory at MIT. The turtle
graphics commands in Logo serve as a
foundation for the development of an
artificial turtle that can move around
on the screen like a real turtle. Logo
programming encourages the modular
development of procedures. In this ar
ticle small procedures are developed
first that can be tested independently.
The program can be expanded easily
by adding new procedures.

There are many different versions
of Logo. The program described in this
article was developed with LCSI's
MicroWorlds Logo. Most versions of
Logo are fairly standard, and the pro-

LOGO EXCHANGE

gram can be transported from one ver
sion to another with only small modi
fications. It is assumed that the teacher
and students have some familiarity
with Logo programming.

The Goal
The goal is to develop a Logo program
that simulates the movement of a
turtle on the computer screen. We
want the turtle to perform a variety
of tasks. Some of the more obvious
tasks are to move, turn, sleep, and eat.
One needs to determine what vari
ables might effect the turtle such as
age, energy level, and location. In or
der to keep the initial simulation
simple, interactions with the human
user will not take place in this imple
mentation. Food, in the forrn of green
trees will be randomly distributed be
fore the turtle starts moving. If the
turtle is on top of a green tree and is
hungry then the turtle will take a bite
out of the tree.

Initial Conditions
At the beginning of any computer pro
gram, one must set constants and vari
ables to initial values. It may be nec
essary to clear the screen and

Vol. 17 I No.3

t
(

command center. The start procedure
for this program sets some constants
and variables, distributes food as
green trees around the screen, and es
tablishes a repeat loop that loops for
the age of the turtle. The start proce
dure can not be tested alone, since it
calls the food and decide procedures
that are not developed at the begin
ning of the program. If one deletes
the two lines that call food and de
cide, then one can run the start pro
cedure to determine if there are any
errors. One can put in some print
statements to determine if the vari
ables are seHo the proper values. For
example: print :energy.

to start

cc ct cg

make "maxenergy 100

maxenergy, maxage, and

maxfood are constants.

make "maxage 200

make "energy :maxenergy ; Set
variables to initial values.
make "age 0
food :maxfood ; Go to food
procedure with :maxfood input.
sate 12 home ; Set initial
conditions of turd e.
repeat :maxage [decide

recycle]
print "Died

end

Recycle is a primitive logo command
in Logo Writer that clears the stacks.

Distribute Food
In order to distribute food randomly
around the screen, a rand procedure
is used to select a random number be
tween a lower and upper limit. The
Logo random command produces a
number from 0 up to the parameter.
For example, random 5 produces the
numbers from 0 to 4 inclusive. The
rand procedure requires two input pa
rameters.

to rand :x :y
output :x + random (:y

:x + 1)

end

Spring 1999

The rand procedure is tested by typ
ing print rand 5 10 in the command
center. A random number between 5
and 10 inclusive should be printed on
the screen. The development of this
procedure illustrates one of the pow
erful capabilities of Logo. It is possible
to define new procedures to add to the
Logo language.

One must determine the dimensions
of the Logo screen. One can move the
turtle to the limits and then type print
xcor or ycor in the command center
to determine the values of the edge of
the screen. In the case of Logo Writer,
the left is -150, the right is 150, the top
is 70, and the bottom is -70.

The shape of the tree has a value of
8, and the green color has a value of7.
The input parameter represents the
number of trees that are placed on the
screen.

to food :x

setsh 8 sate 7 ; Set shape to
tree and color to green.
repeat :x

sety rand

setsh 0
turde.
end

[setx rand -150 150

-70 70 pd stamp pu]

; Set shape back to

Type food 2 0 in the command cen
ter to test the food procedure. Twenty
trees should appear on the screen in a
random pattern.

Turtle Tasks
Most of the time, in software develop
ment, it is easier to start with small
tasks, check them out. and then de
velop a main procedure that calls the
individual tasks. The turtle simulation
lends itself to this "bottom up" pro
gramming style. There are four main
tasks the turtle will perform: move,
turn, sleep, and eat.

In order to make the turtle move for
ward, the forward 40 command could
be used, but the turtle would move too
fast. In order to make the turtle appear
to move slowly, it is necessary to estab
lish a repeat loop. The animation will
appear much more realistic.

LOGO EXCHANGE

Note that the rand procedure that
was developed for the food procedure
is used as input for the move repeat
loop. In this case, the turtle will move
randomly between 10 and 30 steps. The
check procedure is developed later to
determine if the turtle has moved off
the screen or is on top of food. The
energychange procedure will de
crease the energy level of the turtle by
.5. The wait time can be adjusted to
create a more realistic moving turtle.

to move
repeat rand 10 30 [check fd 1

energychange -.5 wait 1]

end

In order to test the move procedure,
one should remove the check and
energychange procedures and type
move in the command center. The
turtle should move forward a random
amount each time. Since the check
procedure is not in use, the turtle will
wrap around the screen.

In the tum procedure, one can use
the fact that a right turn of -30 is re
ally a left turn of 30. Just like in the
move procedure, it is necessary to use
a repeat loop to animate the turn. Note
that the rand procedure is use in two
different places in the turn procedure.

to turn
make "t rand -2 2 ; The
variable tis assigned -2 to 2.
repeat rand 1 90 [check rt
:t energychange -.2 wait 1]
end

One can test the turn procedure by
removing the check and energy
change procedures and typing turn in
the command center. Nate if t happens
to be 0, the turtle will not tum.

The sleep procedure is really just
a random wait along with an increase
in energy.

to sleep

repeat rand 5 10 [check

energychange 5 wait 2]

end

21

The eat procedure produces a
sound, stamps out the green color to
simulate eating, and changes the en
ergy level to a maximum. There is no
reason to access the check procedure
from eat, since the turtle does not
move or use energy to eat.

to eat
tone 800 2
setc 0 pd stamp pu
make "enerqy :maxenerqy
end

Energy Change
The energychange procedure has
one parameter input that provides a
means to increase or decrease the en
ergy level. The procedure does not al
low the energy level to increase above
the maximum. If the energy level drops
below zero, the turtle dies. In addition,
the energychange procedure changes
the color of the turtle depending on the
amount of energy.

to enerqychanqe :x
make "enerqy : enerqy + : x
if :enerqy > :maxenerqy [make
"enerqy :maxenerqy]
if :enerqy < 0 [print "Dies

stopall]
if :enerqy < 25 [sate 8 stop]
;Stop exits this procedure only.
if :enerqy < 50 [sate 9 stop]
if :enerqy < 75 [setc 6 stop]
if :enerqy < 90 [setc 4 stop]
setc 12
end

One can test the energychange
procedure by first typing make "en
ergy 4 4 in command center then

22

energychange 5. Now type print
:energy and see if the energy change
procedure works. The turtle should also
change to the appropriate color.

Check Procedure
The check procedure is used to change
the turtles heading if it moves off the
computer screen. The check proce
dure determines if the turtle is on food
and needs energy.
to check

if and (colorunder > 0)

(:enerqy < .9 * :maxenerqy)
[eat]
if xcor < -150 [seth 90]
if xcor > 150 [seth 270]

if ycor < -70 [seth 0]
if ycor > 70 [seth 180]
end

Decide Procedure
The decide procedure is the main
procedure that calls all of the other pro
cedures that have been developed. A
random number between 1 and 3 is se
lected. The turtle will either move, tum
or sleep, depending on the selection.

to decide

make "choice rand 1 3
if :choice = 1 [move]
if :choice = 1 [turn]
if :choice = 1 [sleep]
end

Conclusion
When one types start in the com
mand center, the trees should appear,
and the turtle should start moving. One
of the major parts of a virtual pet that
is missing in this simulation is real time
interaction. Instead of having all of the

LOGO EXCHANGE

trees appear at the beginning, the user
could provide food by pressing the
space bar on the computer. The turtles
speed could be connected to how much
attention the user paid to the turtle.
With a modem version of Logo like
MicroWorlds, one could develop a
number of buttons and sliders to in
teract with the turtle in a number of
different ways.

About the Authors
Dr. Bill Engel is Professor of Education
at Florida Gulf Coast University. He is
author of several educational software
packages and founder of the Florida
Center for Instructional Technology. Dr.
Engel established graduate programs in
Instructional Technology at the
University of South Florida and is
currently involved in the development
of graduate programs in mathematics
education at FGCU.

Patrick Greene is an Assistant Professor
of Educational Technology at Florida
Gulf Coast University. His interests lie
in infusing technology into the K-12
curriculum. He has written several
articles detailing the use of project
based learning methods and student
centered education. He has also
presented guidelines to improve the
technological training of preservice
teachers.

Patrick J. Greene
Asst. Professor of Ed Tech.,
School of Education
Florida Gulf Coast University
941.590.7802
941.590.7770 (fax)
pgreene@fgcu.edu

Vol. 17 I No.3

IN THEIR OWN WORDS

Using Spezeski's
Poly.Round Procedure

by JOHN HAYES

As I experimented with Spezeski's (1999) poly. round
procedure by trying out different values for the sides,
length, and radius variables, the teacher in me quickly

saw the value for children in such experimenting. I recognised
that the microworld format was ideal for facilitating this. I hope
that what I have developed will be useful for teachers.

What is a microworld? It is not to be confused with the
Logo software of the same name. It is a vehicle recommend by
McMillan (1989, 1992) and Yelland (1992-1993, 1995) for
teaching mathematics concepts through Logo to young stu
dents. According to McMillan (1989) a microworld

• presents a concept or powerful idea to be explored;
• provides a comfortable entry to the concept at the learner's

level of understanding;
• motivates the studentis learning by focusing on what is

inherently interesting to observe and interact with;
• provides an environment for active interaction; and
• has a product or outcome.

The Rounded Polygons microworld meets McMillan's crite
ria. Besides its obvious application to the study of polygons, it
provides a very good setting for experimenting with variables,
providing three, and as such it has applicability to algebra and
the scientific concepts of variables in experiments.

The microworld is built on Spezeski's set, arcr, and polyr
procedures. For the reader's convenience, these are repeated
below (arcr is from Spezeski (1996, p.lOO).

TO SET :X :Y :Z

END

PO SETXY LIST :X :Y PD
SETH :Z

TO ARCR :RADIOS :DEGREES
LOCAL "STEP LOCAL "REM

:REM]
END

MAKE "STEP 2 * :RADIOS * 3.14 I 36
MAKE "REM REMAINDER :DEGREES 10
REPEAT :DEGREES I 10 [RT 5 FD :STEP RT 5]
IF :REM > 0 [FD :STEP '* :REM I 10 RT

TO POLYR :N :L :R
LOCAL "ADJ

END

MAKE "ADJ :R * TAN 180 I :N
PD FD :ADJ PD
REPEAT :N [FD :L - 2 '* :ADJ ARCR :R 360 I :N]
PO BK :ADJ PD

A startup procedure, s, sets up the graphics window with
setextent "printer so that the students can make A4 size
copies of drawings to display and discuss, and prints instruc
tions to the listener window.

TO S
CT DRAW SETEXTENT "PRINTER SETFONT

'Tahoma' 8 1
PR SE 'Enter three numbers with a space

between them' CHAR 58
PPR ' the first is a number for the

number of sides of a polygon;'
PPR ' the second is a number for the

length of the sides of the polygon; and'
PPR ' the third is a number for the

radius of the arc forming the corners.'
MAKE "RESPONSE RL
SETOP.DRAWING FIRST :RESPONSE FIRST BF

:RESPONSE LAST :RESPONSE
CT
PPR (SE 'The numbers you used were' BL

:RESPONSE WORD LAST :RESPONSE " .)
PPR 'Experiment to find the effect of

changing just one of the numbers.'
PPR 'Press the spacebar when you are

ready.'

END

IGNORE RC
CT
PR :RESPONSE
CS ST EXPERIMENTS

The setup.drawing procedure positions the turtle for a cen
tre-of-the-page drawing of the rounded polygon.

TO SETOP.DRAWING :N :L :R

END

CS HT SET -0.50 '* :L 0 0
POLYR :N :L :R

The experiments procedure allows students to try out
many different values of : N : L and : R, and to print graph
ics they want to keep. It calls on label. it to type text to
the graphics as an aid to discussion later on.

TO EXPERIMENTS
MAKE "RESPONSE RL
SETOP.DRAWING FIRST :RESPONSE FIRST BF

:RESPONSE LAST :RESPONSE
LABEL.IT
CT
PPR (SE 'The numbers you used were' BL

:RESPONSE WORD LAST :RESPONSE " .)
PPR 'You can continue to experiment to

find the effect of chanqinq just one of the
numbers.'

PPR 'Press the spacebar when you are
ready, or click on the PRINTER BOTTON to
print the drawinq.'

END

IGNORE RC
CT CS
PR :RESPONSE
ST EXPERIMENTS

TO LABEL.IT
HT

END

SETPC RED
SET -700 -1000 0
TT SE 'Number of sides:' FIRST :RESPONSE
SET -700 -1200 0
TT SE 'Lenqth of sides:' FIRST BF :RESPONSE
SET -700 -1400 0
TT SE 'Lenqth of radius:' LAST :RESPONSE
SETPC BLACK

An extension of Spezeski's concept is to draw the regular
polygon on which the rounded one is based, and to nest inside
it rounded ones with arcs of incrementing radii. An upper limit
is placed on the radii. For this nested. polys and Speziski's
poly are needed.

TO NESTED.POLYS :R
IF :R > :0 THEN STOP ;0 is the upper

limit placed on the lenqth of the radius
POLYR :N :L :R
NESTED.POLYS :R + 110

END

TO POLY :N :L
REPEAT :N [FD :L RT 360 / :N]

END

Setup. drawing becomes

TO SETOP.DRAWING :N :L :0

END

CS HT SET -0.50 * :L 0 0
POLY :N :L
NESTED.POLYS 5

Adjustments are needed to s and
label.it.

In s PPR ' the third is a number
to set the upper limit of the radius of
the arc forming the corners.'

In label.it
TT SE 'Upper limit of radius:'

LAST :RESPONSE

The resulting graphics are obviously different, as can be
seen when the same values are applied as in the example
graphic above.

Note
The microworld was written for PC Logo 2. For other dia
lects of Logo, setextent lprinter would need to be removed,
other means of printing text to the graphics screen perhaps
used, and PR [] (square brackets) used instead of PPR (or
PR) ' ' (apostrophes) for printing mixed-case text to the
listener window. ~

References
McMillan, B. (1989). Teaching with Logo Microworlds. Comput

ers in NZ Schools. 2 , 49-54.
McMillan, B. (1992). Logo in the Context ofC1assroom Learning.

In K-W. Lai & B. McMillan (Ed.), Learning with Computers:
Issues and Applications in New Zealand (pp. 148-174).
Palmerston North, NZ: Dunmore Press.

Yelland, Nicola J. (1992-1993). Introducing Young Children to
Logo. Computing Teacher, 20, 12-14.

Yelland, Nicola J. (1995).Encouraging Young Childrenfs Think
ing Skills with Logo. Childhood Education, 71, 152-155.

Spezeski, W J. (1996). Logo. Models and Methods for Problem Solv
ing. Cambridge, MA: Harvard Associates.

Spezeski, WJ. (1999). Polygons and More. LogoExchange,17(2), 31-32.

About the Author
John Hayes is principal of Te Puke Primary School in rural Te
Puke, near the city of Tauranga, New Zealand. The school is
predominately for Lower socio-economic children aged 5 to 11.

John Hayes
Cameron Rd, Te Puke 3071, New Zealand
jahayes@xtra.co.nz

24 LOGO EXCHANGE Vol. 17 I No. 3

-

N ear where I live there is a life
size labyrinth constructed from
stalks of sorghum. For a nomi-

nal fee one can try one's luck as a rat
finding its way through the maze, with
special bridges on which one can view
the pattern from slightly higher than
plant tops. There are also sound tun
nels with which one can communicate
with other seekers in random parts of
the maze. A good afternoon of fun and
visceral problem solving.

Star Logo is a versatile tool for build
ing and solving mazes. In this column
I will show the power of multiple
turtles in the construction of a maze,
and a first pass at finding a way out.

One way of building a maze is to use
a pattern or template to describe the
interconnected walls. Unless there is
some way of automating the descrip
tion process, building different mazes
this way can be rather laborious.

An alternative is to give each of
scores of turtles a set of instructions
for building a part of the maze, and
turn them loose to self organize. The
basic idea is this: distribute turtles ran
domly to start, have them move for
ward, occasionally turning to the right
or the left, and stopping when they
bump into a wall. By biasing their turn
ing to head straight ahead most of the
time, the wall patterns end up looking
quite reasonable as a maze.

Spring 1999

STARTING WITH STARLOGO

Auto Maze

by ALAN EPSTEIN

to setup
ca crt
builders
setup-builders
setup-fence
setup-maze
place-qoal
end

'builders' can be a slider variable to al
low for user trials and variations.

to setup-builders
sate brown
setx random screen-size - 3
sety random screen-size - 3

seth (random 4) * 90
end

The maze walls will be brown, cre
ated by the builder turtles randomly
scattered about the screen, but not too
near the walls. Also, the turtles begin
with random compass point headings
(0, 90, 180, 270) to ensure square walls.

to setup-fence
if ((abs xcor) > screen-edqe
- 2) or ((abs ycor) >
screen-edge - 2) [setpc
blue]
end

For aesthetic purposes, set up
fence places a blue border around the

LOGO EXCHANGE

entire workspace, further containing
the maze. Use of the absolute value
function, ab s, allows for very brief
coding of the fence. While setup
fence is applied simultaneously to
each patch, the x coordinate is com
pared against the screen limit, result
ing in a blue change if within 2 pixels
of the edge. If the x coordinate is nega
tive (as half of them are), the same
standard is applied, resulting in blue
border bars on the left and the right.
The y coordinates are treated similarly.

Now for the fun part. A recursive
procedure, iter, is initiated by a but
ton called setup-maze. iter is ex
ecuted by each turtle continuously
until it hits a wall or border and dies.
This requires the initial test for exist
ence (alive?). A slider for the variable
wall length allows the user to modify
at runtime the lengths of the maze
walls, at least generally. Values of 4 to
8 yield decent looking mazes.

The extend procedure with the
walllength argument causes each
turtle to repeatedly move forward,
stamping the patches brown until it
either has moved far enough or has hit
a wall. In the latter case, the turtle dies,
having done its duty.

Using the left-or-right procedure to
randomly add or subtract 90 degrees
from the current heading, but only
25% of the time (if random 4 = 0 [...]).

25

The other 75% of the time, the head
ing does not change, allowing the turtle
to continue straight ahead on the next
iteration. The final, tail recursive iter
call continues the process.

to setup-maze
iter

end

to iter
if alive? [extend
walllength

if random 4 = 0 [seth
heading + left-or-right]
iter]

end

to extend :count
repeat :count [fd 1

ifelse pc = black
color] [die]]
end

to left-or-right
ifalse (random 10) < 5

[stamp

[output 90] [output -90]
end

Finally, a red goal patch is created in
one corner of the window, just inside the
border. Later the solution-finding turtles
will test for red patches to know when
they are finished. The place-goal proce
dure creates this 5 by 5 patch in the up
per right hand corner of the window.

to place-goal
if ((xcor < screan-edqe - 1
and ycor < screen-edge - 1)
and (xcor > screen-edqe - 6
and ycor >screen-edge- 6))

[setpc red]
end

Note that there are no controls to
insure that the maze that is built each
time can actually be solved. Since there
is no controlling observer, the turtles
cannot tell for themselves whether they
have created a maze that is soluble. It is
therefore possible that there is no way
to reach the goal from the starting area.
However, this adds to the fun when later
the maze-solving turtles are released to
find their way to the goal patch.

26

With the maze generated, the prob
lem of automatically solving the maze
can be addressed. One solution would
be to let loose a mass of randomly mov
ing turtles whose objective is to find the
red goal patch in the opposite corner.

First create a button for the setup
walk procedure. Then set up these turtles
to begin the run with place-turtles.
turtles-own [win]

to setup-walk

place-turtles
end

to place-turtles
ct crt
turtles

config-turtles
end

to config-turtles
setx 4 - screen-edge
sety 4 - screen-edge

seth (random 4) * 90
if not pc = black [fd 1]
setwin false

setc white
end

The turtles variable should be a
slider. Each turtle is placed in the cor
ner opposite the red goal patch and
given a compass point heading. If the
turtle happens to fall on a wall, move
it forward one to get off. The win vari
able is set to false, indicating that this
turtle hasn't yet reached the goal.

The iterative rules for the seeker
turtles can be as simple as this:

If you are not on the goal patch,
move forward by one and test if
you are still on a black patch. If
you are not, either you have won
or you have hit a wall and you
should back up. In all cases turn
left, right or continue facing for
ward. A "go" button to begin ran
dom-walk should be created.

to go
random-walk
end

LOGO EXCHANGE

to random-walk
if not win [fd 1

if not pc = black
[ifelse pc = red
[setwin true] [bk 1] 1
seth heading + left-or-right
random-walk]
end

The seeker turtles find their way
over the black patches, backing up
when they hit a wall or border, and
turning left or right about half the time.

When the turtles reach the goal
patch, their win flags are set to true,
and those turtles no longer move start
ing in the next iteration. They will ap
pear stuck to the patch.

Although interesting to watch, these
'dumb' turtles take quite a bit of time
to find the goal. Variations on this
model might include changing the left
or-right procedure to return random
heading change values, such as 14 or
71 degrees instead of 90 degrees. How
might this procedure be changed to do
this? What effect would this have on
how fast the turtles make there way to
the goal?

In addition to the variations of ran
dom seeking, there are other ways to
solve the maze. One way that I will
explore next time is the "edge walk",
where a turtle follows any connected
wall by moving in a way in which the
wall is always to one side (left or right).
In preparation for next time, think
about an algorithm for having turtles
perform an edge walk. e'9

About the Author
Alan Epstein is the Director of Technol
ogy for Watertown Public Schools in
Massachusetts. He has also spent 24
years developing software, most
recently commercial modeling and
simulations systems. He holds an M.Ed
from Harvard Graduate School of
Education's Technology in Education
Program.

Alan Epstein
Alan_Epstein@watertown.k12.ma.us

Vol. 17 I No.3

What role should research play
in determining what and how
we teach? In a recent article

James Hiebert (1999) tackles that dif
ficult question (see the entire article
at www.nctm.org/jrme/abstracts/
volume_30/vol30-0l-hiebert.html).
Here, we summarize his major points.
[And, as usual, put some of our own
comments and additions in square
brackets like these.]

Problems in Relating
Research and Practice
Many people's expectations put re
search between a rock and a hard place.
On the one hand, researchers are called
upon to resolve issues that really are
about values and priorities, not about
research. On the other hand, research
is ignored when empirical evidence
could direct decision making. Even
when research is used, what it can and
cannot say is often misunderstood.
Hiebert attempts to clarify what we can
expect from research, especially in
shaping educational standards, such as
the math Standards (National Council
of Teachers of Mathematics, 1989;
1991).

Relationships between
Research and Standards
Can we say, or even ask, if ~research
supports the Standards?" Yes, but the

Spring 1999

LOGO: SEARCH AND RESEARCH

Research and Mathematics
Education Standards
by DOUGLAS H. CLEMENTS AND JULIE SARAMA

answers are not simple. First, standards
are not and can not be based solely on
research. Second, research does not
address all topics and questions equally,
or even at all. Hiebert concludes that,
where research is relevant, it is consis
tent with the Standards.

What We Can Expect
from Research
Why can't research just tell us if the
Standards are right or wrong? One
main reason is the standards are state
ments about values and goals. [This
can have a fundamental impact. There
have been reform projects which par
ents have tried to stop because they
believed that teaching children to think
for themselves-and in mathematics
yet!-is socialist and anti-American.]
Research may help you teach written
computation better, but it can't tell you
how much such skills should be em
phasized.

Research can't even tell you what is
the best approach. Why not? Haven't
other scientific fields achieved that
rigor? Medicine has made great strides.
However, it can not tell us what is
"best." Is meat good for you? Is it five
vegetables and fruits per day or some
other number? Is it different for dif
ferent people? In education and medi
cine, research is valuable, but it can
not always find a best decision.

LOGO EXCHANGE

Hiebert presents an example that,
because it involves technology, we
quote in detail.

Is it better for students to use
calculators or not to use calcula
tors in elementary school? ...
Shouldn't we be able to prove
whether children should use calcu
lators, one way or another? Sup
pose we try. First, we need to de
cide what we mean by better and
how to measure this construct.
Does better mean that students, at
the end, understand mathematics
more deeply, solve challenging
problems more effectively, execute
written computation procedures
more quickly, like mathematics
more? Deciding what better means
is not a trivial task. It requires be
ing clear about values and priori
ties. Suppose, for the sake of argu
ment, that we mean "execute
written computation procedures
more accurately and quickly."
Many people would guess that, if
this is the valued outcome, the no
calculator classroom would be the
best.

How could we test this hypoth
esis? How would we set up a fair
comparison between the calculator
and the no-calculator treatments?
A reasonable approach would be to

27

28

develop, with our desired learning
goal in mind, the best instructional
program we could think of with
the calculator and the best pro
gram without the calculator. Using
this approach would mean that
students in the two programs prob
ably would be completing different
tasks and engaging in different ac
tivities, because different activities
are possible with and without the
calculator. But now we have a
problem because we will not know
what caused the differences in stu
dents' learning. Was it the calcula
tor, the other differences between
the instructional programs, or the
interactions? Maybe we could
solve this problem by keeping the
instructional programs identical;
just plop the calculators into one
set of classrooms and not the oth
ers. But into which instructional
program should the calculators be
plopped-the one designed to
maximize the benefits of the calcu
lator or the one designed to func
tion without calculators? Neither
choice is good, because the omitted
program would not get a fair test.
Maybe we should split the differ
ences. But then we have an in
structional program that no one
would intentionally design.

Does this research design prob
lem mean that all the studies on
using calculators, and there have
been many, are uninterpretable?
No. But it does mean that no
single study will prove, once and
for all, whether we should use cal
culators. The best way to draw
conclusions regarding issues like
this is to review the many studies
that have been done under a vari
ety of conditions and look for pat
terns in the results As it hap
pens, this kind of review of
calculator use has been done and a
partial and tentative answer is
available (Hembree & Dessart,
1986). The results indicate that us
ing calculators. along with com
mon pencil-and-paper activities,

does not harm students' skill de
velopment and supports increased
problem-solving skills and better
attitudes toward mathematics.
This finding does not mean, by the
way, that this is what will be found
in every classroom, but it does in
dicate two things: (a) A decision to
use calculators wisely during
mathematics instruction can be
made with some confidence; and
(b) when calculators are blamed
for damaging students' mathemati
cal competence, it would be useful
to check the full instructional pro
gram-the problem is likely to be a
poor use of calculators, or a fea
ture of instruction unrelated to
calculators, and not the calculators
themselves.

Research can't decide what your
goals are. And even if it compares two
methods and finds one more effective,
it can't tell you what is "best" -a new
alternative may be better than either
of the two evaluated.

What can we expect from research?
Research can influence standards by
providing us new ways of seeing and
thinking about learning. For example,
early in this century, Thorndike's re
search encouraged a move away from
teaching mathematics to "exercise the
mind." More recently, research on
young children's learning shows us
that students can solve arithmetic story
problems before school instruction and
can invent their own solution methods.
Research can show us that students
can learn new ideas, or that certain ap
proaches, while attractive, are not ef
fective.

Research can also provide informa
tion about how we are doing at the
moment. While obvious, this is not of
ten used. In California, for example,
many claimed that the new standards
led to a decline in achievement. But
there was no information on the extent
to which the frameworks were influ
encing mathematics instruction in the
state's classrooms! Without such infor
mation, the question can't be answered.

LOGO EXCHANGE

What We Can Learn
from Research
One thing we do know is the current
state of classroom teaching. It hasn't
changed in a long time. Answers are
given for homework. A brief explana
tion is given of new material. Problems
are assigned for the next day. Students
work independently on the homework
while the teacher answers questions.
Most of what is taught is procedures,
especially written computation. There
is little emphasis on concepts, solving
challenging problems, and on math
ematical reasoning, communicating,
conjecturing, justifying, and proving.
***The research he cited for this was
20 years old, right?

Achievement data shows that stu
dents in the U.S. do learn procedures,
but their mathematics knowledge is
fragile. Hiebert says that traditional
teaching approaches are deficient and
can be improved." What is disappoint
ing is that people believe that "experi
mental" approaches are "unproven"
and traditional instruction is "proven."
Hiebert argues that "presuming that
traditional approaches have proven to
be successful is ignoring the largest
database we have."

What about new teaching methods?
There are so many topics and variables
that no single conclusion can be
drawn. However, one area is a research
success story: primary-grade arith
metic. These successful programs
share several features that Hiebert de
scribes:

• Build directly on students' entry
knowledge and skills. Many stu
dents enter school being able to
count and solve simple arithmetic
problems

• Provide opportunities for both in
vention and practice. Classroom
activity often revolves around
solving problems that require
some creative work by the stu
dents and some practice of al
ready learned skills. . . .

• Focus on the analysis of (mul
tiple) methods. Classroom discus-

Vol. 17 I No. 3

sian usually centers on the meth
ods for solving problems, meth
ods that have been presented by
the students or the teacher. Meth
ods are compared for similarities
and differences, advantages and
disadvantages.

• Ask students to provide explana
tions. Students are expected to
present solutions to problems, to
describe the methods they use,
and to explain why they work.

Research indicates that such pro
grams can facilitate significant math
ematics learning without sacrificing
skill proficiency and that students
learn new concepts and skills while
they are solving problems.

Why don't we have more programs
like this? Research confirms that pro
fessional development is the answer.
Also, such development is demanding,
including "(a) ongoing (measured in
years) collaboration of teachers for
purposes of planning with (b) the ex
plicit goal of improving students'
achievement of dear learning goals, (c)
anchored by attention to students'
thinking, the curriculum, and peda
gogy, with (d) access to alternative
ideas and methods and opportunities
to observe these in action and to re
flect on the reasons for their effective
ness Because most classroom teach
ers in the United States do not yet have
learning opportunities of this kind, it
is not surprising that promising alter
native methods are not widely imple
mented."

What About Logo?
Many of Hiebert's points apply tore
search on Logo, whether in mathemat
ics education or other spheres. There
are the same difficulties and cautions.
One reason we provided Hiebert's dis
cussion of calculators in such detail is
that almost the same argument could
be made concerning Logo. We know
that Logo is expected to "prove itself"
(and there is nothing wrong with that)
but non-Logo, traditional approaches
do not. We can't always use research

Spring 1999

to "prove" what we value about Logo.
Research can tell us a lot about Logo.

To provide all these cautions, and then
briefly tell what the research says about
Logo in mathematics education, would
be, well, incautious. But we can pro
vide the conclusions of our recent re
view (Clements & Sarama, 1997).
There we conclude that Logo program
ming can serve many of the same pur
poses as the "experimental programs"
that Hiebert discusses. Working with
Logo, students can construct elaborate
knowledge networks (rather than me
chanical chains of rules and terms) for
mathematical topics. There are several
unique characteristics of Logo that fa
cilitate students' learning.

1. The commands and structure of
the computer language are con
sistent with mathematical sym
bols and structures.

2. Logo promotes the connection of
symbolic with visual representa
tions, supporting the construc
tion of mathematical strategies
and ideas out of initial intuitions
and visual approaches. We be
lieve that Hiebert would agree
with the somewhat simplified
statement that understanding is
making connections.

3. The turtle's world involves mea
surements that are visible yet for
mal quantities, helping to con
nect spatial and numeric
thinking.

4. Logo permits students to outline
and then elaborate and correct
their ideas. Logo helps document
student actions, leading the
mathematical symbolization.

5. Logo encourages the manipula
tion of screen objects in ways that
facilitates students' viewing them
as mathematical objects and thus
as representatives of a class.

6. Logo demands and so facilitates
precision and exactness in math
ematical thinking.

7. Logo provides a mirror of stu
dents' mathematical thinking.
For teachers willing to work with

LOGO EXCHANGE

and listen to students, such en
vironments provide a fruitful set
ting. They help take the student's
perspective and discover previ
ously unsuspected abilities to
construct sophisticated ideas if
given the proper tools, time, and
teaching.

8. Because students may test the
ideas for themselves on the com
puter, they aid students in mov
ing from naive to empirical to
logical thinking and encourage
students to make and test conjec
tures. Thus, Logo facilitates stu
dents' development of autonomy
in learning (rather than seeking
authority) and positive beliefs
about the creation of mathemati
cal ideas.

Hiebert warns that you can not con
dude that an experimental approach
has no effect if you do not know if it is
used well. The original developers
wanted Logo to serve as a conceptual
framework for learning mathematics
(Feurzeig & Lukas, 1971; Papert,
1980a). Many studies, however, are
built on the assumption that straight
forward exposure to mathematical con
cepts within the context of Logo pro
gramming increases mathematics
achievement. Research evidence per
taining to this presumption is incon
clusive. In contrast. using Logo pro
gramming as a conceptual framework
is not a method of directly practicing
or teaching mathematical ideas. In
stead, its effects on mathematical
knowledge may result from students'
construction and elaboration of sche
mata that form a structure upon which
they build future learning. In particu
lar, Logo may permit students to ma
nipulate embodiments of certain math
ematical ideas. Serving as a transitional
device between concrete experiences
and abstract mathematics, it may fa
cilitate students' elaboration of the
schemata for those ideas. Finally, Logo
is an environment in which students
can use mathematics for purposes that
are meaningful and personal for them.

29

As Hiebert argued, the teacher's role
is critical. Teachers must be involved
in planning and overseeing the Logo
experiences to ensure that students
reflect on and understand the math
ematical concepts. They need to (a)
focus students' attention on particular
aspects of their experience, (b) educe
informal language and provide formal
mathematical language for the math
ematical concepts, (c) suggest paths to
pursue, (d) facilitate disequilibrium
using computer feedback as a catalyst,
and (e) continually connect the ideas
developed to those embedded in other
contexts. Teachers must provide struc
ture for Logo tasks and explorations to
facilitate desired learning. To accom
plish all this, teachers need specifically
designed Logo activities and environ
ments.

The best use of Logo may involve
full integration into the mathematics
curriculum. Too much school math
ematics involves exercises devoid of
meaning. Logo is an environment in
which students use mathematics mean
ingfully to achieve their own purposes.
The Logo language is a formal symbol
ization that students can invoke, ma
nipulate, and understand. Thus, using
Logo in mathematics is "teaching stu
dents to be mathematicians vs. teach
ing about mathematics" (Papert,
1980b, p. 177).

Finally, we need continuing re
search and development to expand our
knowledge of what students and teach
ers learn in various Logo classrooms.
Standardized tests do not measure
many concepts and skills developed in
Logo (Butler & Close, 1989). 19
References
Butler, D., & Close, S. (1989). Assessing

the benefits of a Logo problem-solving

30

course. Irish Educational Studies, 8, 168-
190.

Clements, D. H., & Sarama,]. (1997). Re
search on Logo: A decade of progress.
Computers in the Schools, 14(1-2), 9-46.

Feurzeig, W, & Lukas. G. (1971). LOGO
A programming language for teaching
mathematics. Educational Technology.
12, 39-46.

Hembree, R., & Dessart, D. J. {1986). Ef
fects of hand-held calculators in
precollege mathematics education: A
meta-analysis. journal for Research in
Mathematics Education, 17, 83-99.

Hiebert, J. C. {1999). Relationships be
tween research and the NCTM Stan
dards. journal for Research in Mathemat
ics Education, 30, 3-19.

National Council of Teachers of Mathemat
ics. (1989). Curriculum and evaluation
standards for school mathematics.
Reston, VA: Author.

National Council of Teachers of Mathemat
ics. (1991). Professional standards for
teaching mathematics. Reston, VA: Au
thor.

Papert. S. (1980a). Mindstorms: Children,
computers. and powerful ideas. New
York: Basic Books.

Papert, S. (1980b). Teaching children
thinking. In R. Taylor (Ed.), The com
puter in the school: Tutor, tool, tutee (pp.
161-176). New York: Teachers College
Press.

About the Authors
Douglas H. Clements, Professor at the
State University of New York at Buffalo,
has studied the use of logo environ
ments in developing children's creative,
mathematics, metacognitive, problem
solving, and social abilities. Through a
National Science Foundation (NSF)
grant, he developed a K-6 elementary
geometry curriculum, logo Geometry
(published by Silver Burdett, & Ginn,
1991). With colleagues, he is working
on the previously mentioned NSF

LOGO EXCHANGE

research grant and is finishing a second
NSF-funded project, Investigations in
Number, Data, and Space, to develop a
full K-5 mathematics curriculum
featuring logo. With Sarama, he is co
authoring new versions logo for
learning elementary mathematics. One,
Turtle Math, is currently available from
lCSI. Sarama and Clements are co-PI's
on the aforementioned Building Blocks
project, which is developing mathemat
ics software for preschool to grade 2
children.

Julie Sarama, Ph.D., is an assistant
professor at Wayne State University,
where she teaches mathematics content
courses for pre-service teachers and
research courses for graduate math
ematics education students. She has
studied teachers' use of computer
innovations and students development
of mathematical constructs while
working in computer microworlds. She
is co-author of several Investigations
units and of Turtle Math and has
designed and programming new versions
of logo and other computer micro
worlds. She is co-principal investigator
on the new Building Blocks project.

Douglas H. Clements
SUNY at Buffalo
Dept. of Learning and Instruction
593 Baldy Hall
Buffalo, NY 14260
Clements@acsu.buffalo.edu

Julie Sarama
Wayne State University
Teacher Education Division
Detroit, Ml 48202
Sarama@coe.wayne.edu

Vol. 17 I No.3

8 ack in the '80s, a popular Logo
activity was to have kids make
quilts with turtle graphics. This

project lends itself to collaboration,
mathematical problem solving, creativ
ity and folk lore. Students can tell sto
ries through their quilts and the act of
assembling a Logo quilt requires the
communication of geometric relation
ships to the computer.

For those of you interested in explor
ing "old-fashioned" Logo quilt making
with your students, follow these in
structions:

1. Agree on a size for the basic
block. 80X80 turtle steps is a
good size.

2. Write a BLOCK procedure to
draw the outline of the patch.

Spring 1999

FOR BEGINNERS

21st Century Logo Quilts
An Activity for Advanced Beginners

by GARY S. STAGER

3. Write patch procedures in which:
a. all of the drawing occurs with

in the walls of the patch
b. the turtle always returns to

where it began-heading in the
original direction. This state
transparency allows for the
next block to be drawn predict
ably. In Logo as in life. it is good
to return to where you began.

c. Name each patch procedure
with the initials of the pro
grammer and a number, i.e
gsl, gs2 ... gs5, etc. This sys
tem of unique naming makes it
possible to share procedures to
build common quilts.

4. Experiment, have fun , use color
5. Write procedures to randomly as

semble new quilts.

LOGO EXCHANGE

Dan and Molly Watt wrote exten
sively about teaching and learning with
Logo. Their book, Teaching with Logo
Building Blocks for Learning, takes an
in-depth look at quiltmaking with
turtle graphics. Ideas for understand
ing student learning and assessing that
learning may be found in the book
listed below.

The following are some sample pro
cedures for making old-fashioned
quilts. The illustration above was cre
ated with these self-explanatory pro
cedures . The move. r, move. 1,
move . u and move . d procedures are
intended to slide the turtle so another
patch may be created.

31

Old-fashioned Quilt
Starter Procedures
to block

setc "black

pd

repeat 4

[fd 80 rt 90]
end

to gsl
block

rt 45 fd 113

bk 113 lt 45

end

to gs2

gsl

fd 80 rt 90

gsl

lt 90

bk 80

end

to move.r

setx xcor

end

to move.!

setx xcor

end

to move.d

sety ycor

end

to move.u

sety ycor

end

+ 80

- 80

- 80

+ 80

Quilting MicroWorlds-style
The modern interface of MicroWorlds
invites learners to create their own
quilting software. In this project we will:

• design geometric (and non-geo
metric) quilt patches as turtle cos
tumes in the shapes centre

• ask stationary turtles to behave as
buttons

• move a patch into position and
stamp its shape on the screen in or
der to assemble a mosaic-like quilt

Students still experiment with and
create geometric patterns but have a
different relationship to these patterns.
Concepts like symmetry may come to
the forefront more readily when the
user creates with the stamps rather
than with turtle geometry. Try it. Let
me know what you think. The tool pro
cedures provided are intended as scaf
folding so students of all ages and abil
ity levels can express their creativity
and achieve programming success.

Step One-Design the Patches

32

• Change turtle costumes to appear
as quilt patches. Be sure to use the
same size square in each shape.

• Name the shapes, blockl, block2,
etc., to reduce confusion.

• Use your imagination, color, cre
ativity and don't forget that you
can rotate costumes in the shapes
centre. Copy and paste may also
reduce your workload while cre
ating new patches.

Step 2: Create the Control Buttons
• Hatch a turtle per patch you cre

ated
• Put a different patch shape on

each turtle
• Line the turtles up vertically along

the side of the page or horizontally
along the top/bottom of the page.

Step 3: Program the Turtle Buttons
• Use the eye tool to give each of

these turtles the instruction
Changeblock "blockl where
blockl is the name of the shape
attached to this turtle. Check
ONCE in each turtle 's instruc
tion.

Step 4: Create Buttons
• Drop a Micro Worlds button with

the ONCE instruction STAMP IT
on the button.

• Drop a Micro Worlds button with
the ONCE instruction CLEAR on
the button.

Step 5: Create the Stamping
Turtle (cursor)

-....._._

LOGO EXCHANGE

• Hatch one more turtle.
• Name it STAMPER. It does not

need any instructions.

Step 6: Create the
Navigational Buttons

• Drop four buttons on the page.
• Arrange the buttons in compass

directions.
• Give each button the once instruc

tion North, South, East and West.
(one each) You can't use up and
down because right and left
are already Logo primitives.

Step 7 (optional): Compose a
Click Sound

• Drop the melody tool on the page
• Create a one or two quick note

click sound to add to your
stampi t button.

Type the following procedures on
the procedures page:

to clear

clean

stamper, pu home

end

to stampit

stamper, stamp

click

end

to changeblock : costume

stamper, setsh : costume

end

to north

stamper,

seth 0
pu fd 40

end

to south

stamper,

seth 180

pu fd 40

end

to east
stamper,

seth 90

Vol. 17 I No.3

pu fd 40

end

to west

stamper,

seth 270

pu fd 40

end

Try my sample quiltmaker below.

• Click Clear to wipe the screen
clean.

• Click the navigational buttons to
move the stamper.

• Click stampi t to leave the patch
on the screen.

In the following example, I deleted
the navigational buttons (north, south,
east, west) and replaced them with
turtles wearing arrow costumes. Each
of these arrow turtles has the appro
priate north, south, east or west
instruction. Be sure to tell the turtles
to run the instructions only once.

Quiltmaker with
navigational arrows rather
than MicroWorlds buttons .••

In the final variation on the
Quiltmaker software a slider is added

Spring 1999

to control the size of each block and the
equivalent space between patches.

A slider is a visual variable in
Micro Worlds. Sliders have a name and
report the value set on the slider. The
slider therefore is a Logo reporter/op
eration.

Instead of asking the turtle to move
forward 40 steps each time a naviga
tional button is pressed, the turtle will
move by the distance set by the slider.
Our slider will be named, LENGTH.

The changeblock procedure has
an added instruction for setting the size
of the patch to the value set by the
slider.

Quiltmaker with slider
to determine block size

-
Step One
Create a slider named, Length, and set
its range from 10 to 100.

Step Two
Change the procedures in the proce
dures page to reflect the changes in ital
ics below. You can also use Find/Re
place to swap fd 4 0 with fd length.

to clear

clean

stamper, pu home

end

to stampit

stamper, stamp

click

end

to changeblock :costume

stamper, setsh : costume

setsize length

end

to north

LOGO EXCHANGE

stamper,

seth 0
pu Ed length

end

to south

stamper,

seth 180
pu Ed length

end

to east

stamper,

seth 90
pu Ed length

end

to west

stamper,

seth 270

pu Ed length

end

Related Links
A terrific source of links on the math
ematics of quilting, geometric patterns,
related books and quilting itself can be
found at: http://members.aol.com or
hit the Yahoo Quilt Index at http://
dir.yahoo.com/ Arts/Crafts/Quilt
ing/.

Point your browser to www.
tessellations.com/ for an amazing
assortment of inexpensive, challeng
ing, and beautiful foam tessellating
puzzles. !:9

About the author
Gary 5. Stager is Editor-in-Chief of Logo
Exchange, Editor-At-Large of Curriculum
Administrator Magazine and an adjunct
professor of education at Pepperdine
University. Gary is the recent author of
MicroWorlds Pro Tips and Tricks and The
North Star Guide to Technology Plan
ning. Go to www.stager.org to find a
collection of resources for progressive
educators.

Gary Stager, Editor-in-Chief
logoexchange@stager.org

33

0 ne of the strengths of Logo is its
extensibility. Through our abil
ity to choose procedure names

that, in turn, become something akin
to computer commands, we can give
meaning to our work.

However. I am convinced that this
capability has never been fully ex
ploited, especially in the area of math
ematics. In this article, I would like to
offer an example or two of how care
fully named procedures can provide an
extra layer of meaning to mathemati
cal constructs which are, in themselves,
rather abstract.

Let me start with the concept of the
standard deviation, and develop proce
dures in a top-down fashion, starting
from a fundamental definition. Math
ematically. the standard deviation is
often defined as the square root of the
variance. (We'll deal with variance in
a moment.)

To calculate a standard deviation, we
also need a set of data, organized into a
list for Logo use. Putting these two ideas
together, we can develop a starting pro
cedure such as the following.

to standard.deviation :datalist
output sqrt variance :datalist
end

In this case, the standard.deviation
procedure is a reporter which accepts
a list of data as input, and outputs a
value calculated by another procedure
called variance.

After this promising start, things
sometimes get a little complicated be-

34

Giving Meaning to
Mean (and Standard
Deviation, Too)
by TOM LOUGH

cause variance is usually defined by a
complicated-looking mathematical for
mula. However, if the formula is
"translated" into English, it sounds
something like the following.

Variance is equal to the product of
the number of data points times the
sum of each squared data point sub
tracted by the squared sum of all data
points, all divided by the product of the
number of data points times the num
ber of data points less one.

Believe it or not, this suggests a pro
cedure such as the one below. Compare
the Logo language with the definition
above.

to variance :datalist
output (((n :datalist) *
sum.of squared :datalist) -
(squared sum.of :datalist)) I
((n :datalist) * ((n
:datalist) - 1)
end

The variance procedure is a reporter
that accepts a list of data as input, and
outputs a value calculated by several
other procedures, including ones with
the names of n, sum.of, and squared.

After examining what each part of
the variance definition means, it is pos
sible to write procedures that carry out
the appropriate actions. For example,
the n procedure simply reports the
number of data points in the list of data.

ton :what
output count :what
end

LOGO EXCHANGE

Things do get a bit complicated with
the sum.of procedure. It's purpose is
to report the sum of all data points in
a list. Without elaboration, here is one
way to do this.

to sum.of :datalist
ifelse not empty? :datalist
[output (first :datalist) +
sum.of butfirst :datalist]
[output 0]
end

The squared procedure is one that
needs to perform a double duty. On one
hand, it must output a list containing
the square of each data point if the in
put is a list of data. But if the input is a
number, the squared procedure must
output the square of that number. The
procedure below performs both of
these functions.

to squared :what
ifelse list? :what [output
list.of.squares :what]
[output :what * :what]
end

As you have already noticed, one
additional procedure is needed in or
der to produce the list of squares of the
data points. Here is one way to do that.
Note the similarity of this procedure
design to that of sum.of.

to list.of.squares :datalist
ifelse not empty? :datalist
[output sentence (squared
first :datalist)

Vol. 17 I No.3

-

list.of.squares butfirst

:datalist] [output []]

end

If we have written our procedures
correctly, then we can now use them
to calculate standard deviations for
lists of data points.

show standard.deviation 2 2
2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

3 3 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 5 6 6

6 6 6 6 6 6 6 6 6 6 6 7 7 7 7

7 7 7 7 7 7 7 8 8 8 8 8 9 9

9]

1.971431

But calculation was not our primary
purpose, even though it might be use
fuL What we were exploring here was
the ability of Logo to "speak" to us, to
make mathematical concepts more un
derstandable-if we name our proce
dures meaningfully. I hope this example
for the standard deviation has given
you some ideas of your own to try.

As an extension, here is a procedure
for the mean, a frequent companion to

THE LAST WORD/ Continued from Page 36

mathematicians interpret their calculation
or technology-based experiment in the light
of their background knowledge; students
typically are building that background
knowledge from the experiences they have
with the technology. These differences sug
gest ways that the technology should and
should not be used in learning.

Access or excess?
Technology makes some mathematical
activities and problem domains much
more accessible by removing the drudgery
or supplying the computational brawn.
Because of this, technology makes it pos
sible for certain important mathematical
ideas to take root in intuitive forms ear
lier than would otherwise have been pos
sible, potentially laying a valuable foun
dation for the later formalization of these
ideas. But sometimes the ideas are genu
inely more subtle than they appear, and
early access trivializes or distorts them.

Spring 1999

the deviation. Is it meaningful to you?
Note the use of previously defined pro
cedures.

to mean :datalist

output (sum.of :datalist) I n
:datalist

end

Finally, variance is sometimes de
fined in terms of residuals (differences
between the data points and the mean
value). The var procedure below was
designed according to this definition.
As an exercise, can you deduce the
English definition of variance from it?
The residuals and residual procedures
are derived from the definition of a
residual.

to var :datalist

output (sum.of squared

residuals :datalist mean

:datalist) I ((n :datalist) -

1)
end

to residuals :datalist :value

ifelse not empty? :datalist

[output sentence (residual

Fallout of information age.
Computers force change (remember the
Trojan Horse) but they also streamline
and amplify what already prevails, and
can thereby influence culture without
our intent or even our awareness. Troy's
revenge. The greatest influence electron
ics has had on education is not anything
done in a classroom, but rather the shift
toward machine-scorable multiple-choice
tests. This supports a school epistemol
ogy that gives very heavy weight to
knowledge of facts. 1 From this perspec
tive, the SAT is the intellectual parent of
"200 things your second grader needs to
know," and computers may be abetting
the forces against the stated goals of cur
riculum reform. The rush to the Internet
and the push to get data analysis into the
curriculum-both made possible only by
the new computational technologies
further suggest that the current Zeitgeist
focuses on gathered information, rather

LOGO EXCHANGE

first :datalist :value)

residuals butfirst :datalist

:value]

[output []]
end

to residual :value1 :value2

output :value1 - :value2
end

In closing, I hope that this example
of using Logo's extensibility to make
mathematical constructs more under
standable will encourage you to try
some of your own. By naming proce
dures meaningfully, we can open the
world of mathematics more fully-to
ourselves and to our students. e
About the author
Tom Lough is the founding editor of
Logo Exchange and has taught a variety
of mathematics courses at the high
school and college Levels. He is
currently an assistant professor of
science education at Murray State
University in Murray, Kentucky.

Tom Lough
tom.lough @coe.murraystate.edu.

than on the systematization of ideas or
the fostering and formalization of rea
soning. I'm dubious that this is the right
way to go, but even if it should turn out
to be, our present voyage in that direc
tion is not so much a considered deci
sion as it is a move of momentum. e
1 Yes, it is possible to write multiple
choice tests that call for understanding.
but it's harder, because the testee can of
ten use pattern matching strategies in
stead of understanding to find answers.

About the author
Dr. Paul Goldenberg is Senior Scientist
at the Education Development Center in
Newton, Massachusetts. He is coauthor
of Exploring Language with Logo with
Wally Feurzig.

Paul Goldenberg
paulg@edc.org.

35

When computers and hand-held
calculators were first gaining
wide currency in classrooms,

their introduction was accompanied by
great hope (and hype) about what could
happen and also by dire predictions about
what would happen. But because they
were new, what would really occur was
all a matter of speculation. Research has
suggested some of the answers, but by any
reasonable standards the technology is
still new, and its effects are (quite natu
rally) still only partly understood. Over
the more than 25 years that I've been in
volved with computers in mathematics
learning, I've shed some old hopes and
worries, but I've also developed new ones.
Because much of the contribution to this
conference is focusing on the hopes and
the research, I will (without being bleak
or gloomy) confine myself to listing my
new worries, worries that are not, to the
best of my knowledge, yet well addressed
in the research. I'll also try to suggest
ways, conjectural though they must be,
of avoiding what I see as potential pitfalls.

36

THE LAST WORD: COMMENTARY

Chipping Away
at Mathematics:
A long-time technophile's worries about
computers and calculators in the classroom
by E. PAUL GOLDENBERG

Mathematics, not
technology, must lead
Discussions about computational tech
nologies in the schools often stress the
rapidity of change and how very hard it
is for schools to scramble to keep up with
the changes: new software makes old
hardware obsolete, new hardware makes
old software obsolete, new capabilities
change people's expectations. But this is
a cart-before-horse perspective. The new
computational technologies make certain
things easier and other things harder. It
is easy to get seduced by the possibili
ties, constrained by the limitations, and
driven by the momentum. These forces
are poor guides for educational change.
Good decision making must keep tech
nology the servant and not the master.

Ideas have more than one role
Without technology, certain computational
techniques were indispensable in order to
find answers. But here's what's often over
looked: Some of these techniques had, in
addition to their basic computational func
tion, other important benefits that re
mained largely invisible because they could
be taken for granted. One didn't need to
think about the side benefits because they
came "for free" with the required tech
nique. Chucking a technique because tech
nology has rendered its computing function
obsolete may also mean chucking these
"side benefits,· resulting in troublesome
gaps in students' mathematical knowledge
and understanding. The long divisional
gorithm-often used as the example par ex
cellence of a foolish post-calculator teach
ing-is a case in point.

LOGO EXCHANGE

Empowerment requires control
With the old pedagogies, although most
students passed their courses, many of
them-even very smart ones-learned
just enough to get by. Only a very small
number developed what we sometimes
call "mathematical understanding."
Technology offers the lure of an alterna
tive, by which students can gain access
to important mathematical ideas without
the protracted skills-acquisition period
that used to be the only route and that.
by many accounts, failed anyway. But are
we making sure that the students whose
parents couldn't (or at least didn't) mas
ter algebra will become true masters of
their spreadsheets, dynamic geometry,
and other computational technologies?
Or will their electronic tool skills remain
just barely passable, as were the algebraic
skills of their parents, effectively replac
ing one set of barriers with another?
What will actually happen, of course, is
an empirical question we must wait to
answer, but what we'd like to have hap
pen involves a principled decision that
we must actively make now.

Computational technology for
learning vs. computations for work
Students and professional people bring dif
ferent backgrounds to their use of technol
ogy, and they also bring different questions
and needs. For engineers and business
managers, it is often the particular answer
to a particular question that is of primary
importance. For students, the opposite is
most often the case. Likewise, scientists and

See THE LAST WORD (Page 35)

Vol. 17 I No. 3

Logosium '99
SIGLogo's Annual Celebration of Logo Learning

June 21st, 1999
• Hands-on Workshops Exploring the Vast Possibilities of Logo
• Practical Teaching Strategies by Logo-using Teachers
• Exciting Guest Speakers
• Authentic Ph illy Lunch and Great Dinner before Returning to NECC in Atlantic City

A bus will leave Atlantic City for Philadelphia where this historic event will occur.
Don't miss the best Logo event of the year!

Register at http://www.neccsite.org

ISTE BRINGS THE WORLD
OF TECHNOLOGY CLOSER TO YOU.

By drawing from the resources of committed professionals worldwide ,
ISTE provides support that helps educators like you prepare for the

future of education .

As an ISTE member, you benefit from a wide variety of
publications, national policy leadership , and our work

with Teacher Accreditation.

You also enjoy exciting conferences, global peer
networking , and graduate-level Distance Education

courses .

So if you ' re interested in the education of
tomorrow, call us today .

® lste International Society for
Technology in Education

Teachers Helping Teachers Use Technology in the Classroom

WE'LL PUT YOU IN TOUCH WITH THE WORLD.

®lste International society for Technology in Education
Administrative Office
1787 Agate Street, Eugene, OR 97403-1923 USA

Non-Profit
Organization
US Postage

PAID
ISTE

