
Journal of the ISTE Special Interest Group for Logo-Using Educators

i LOGO
•t t• EXCHANGE

November 1989 Volume 8 Number 3

NEW YORK•s NIGHT IS UERY BEAUTIFUL.
THERE ARE MANY STARS} AIRPLANES~ AND A
FULL MOON. I THINK EUERYBODY LOUES NEW
YORK HIGHT.

N.V.NIGHT BY
OAHTAO *
KOH~ *• * * *

*
~

~

~-

* * * * * r--- *0
* ~

-~
~

~ --

International Society for Technology in Education

LONG DISTANCE LOGO
Educators-You don't have to go to classes to earn graduate credit-let the classes come to
you! Introduction to Logo For Educators, a graduate level independent study course, allows
you to learn at your own pace while corresponding with your instructor by mail.

WORK INDIVIDUALLY OR WITH A GROUP

Take Introduction to Logo For Educators at home, or study with a group of colleagues.
The course uses video tapes (ON LOGO) with MIT's Seymour Papert, printed materials ,
textbooks, and disks. View the tapes, read and report on course materials, do projects ,
design Logo lessons for students , and correspond with instructor by mail.

NOT JUST ANOTHER CLASS

Dr. Sharon (Burrowes) Yoder, editor of the Logo Exchange journal , designed Introduction to
Logo For Educators to provide staff development and leadership training . The four quarter­
hour course meets the standards of the College of Education at University of Oregon, and
carries graduate credit from the Oregon State System of Higher Education.

ON LOGO VIDEO TAPES

School Districts may acquire a license for the use of the ON LOGO package of 8 half-hour
videotapes and 240 pages of supporting print for $599.00. For a one-time fee of $1295.00, the
package may be obtained with both tape and print duplicating rights, enabling districts to build
libraries at multiple sites.

Group Enrollment. A tuition of $260 per participant is available to institutions that enroll a
group of six or more educators. This special price does not include the ON LOGO videotapes.
Your group must acquire the tapes or have access to them. Once acquired, the library of
tapes and materials may be used with a new groups enrolling for the same reduced fee.

Individual Enrollment. Educators with access to the tapes may enroll indiviidually for $290.
Tuition including tape rental is $320. A materials fee fo $60 per enrollee is charged for texts
and a packet of articles. Enrollees who already have the texts do not neet to order them.

Tuition Information, Detailed Course Outlines, and Order Blanks can be obtained from :

LONG DISTANCE LEARNING, ISTE, University of Oregon,
1787 Agate St., Eugene, OR 97403-9905.

Phone 503/686-4414.

Volume 8 Number 3 Journal of the IS1E Special Interest Group for Logo-Using Educators November 1989

Fouridlng k~l(M" •• •· • •... · • >
Tom LQUgb····

Edltor~I~~C~ek •••••.•••••.••••.•. •• •. •' ·• •··•.·•• • ..

Shamll Y Odl:t
International ~~t~ < •• ••..• ••••· •··•· · •... · ..

. Dennis l!arper • · •· .· ..
Intern~~:Oal Flel~ tJ.~~ < •· • •·· • ·. •

Jeff Rii:hill'tlsOc! • • ·· · · ·· ·
•.• Jun-iC:IuY~s~ } •••• J / .·.·····.·•· •..•.•... •···•····•··· · ..

·~~1r~~~r·······················
Hillel w eintriwb

Contr~~~~d:~:si i ... •
GlliliBuU .·•· •.
GlcriBu.It.••.·•····· ..

·a~.i"'}}.r .. ·
Judi.Hanu ••····

1;~~·1~~~~i····· i•

··~ilii~y~~?M~;t
SiGL~~~lliDi~~~~·····.···········{· ·• Gazy Stiger; •·· President

LO~Friedriliill,. Vice~President .··.·. •... . .•.

~~~M~!O.~:;~ ~unicliuons•. 

P~j.'~·~od~y •• for·~i2~,i~y·m·~du2i~························ 
&\\lk~l:.r:~ 
Balli~~· 

Contents 

From the Editor - Logo: Programming Language 
or Application 
Sharon Yoder 

Monthly Musings- The RT Stuff 
Tom Lough 

Logo Ideas - The Subject is Poetry 
Eadie Adamson 

Customizing Logo With a Startup File 
DianeMiller 

Beginner's Corner- A Logo Melody 
Dorothy Fitch 

LogoLinX- Alphabet Adventures 
Judi Harris 

Survey and Graphing Tools 
Bill Craig 

Logo & Company - Hypermedia Castle 
Glen Bull, Gina Bull 

Letter to the Editor 

Math Worlds- Two Turtles in a Hot Tub: Part m 
Sandy Dawson, editor 

Search and Research- To err is human ••• 
Douglas H. Clements 

Euro Logo '89 Report 
Ken Johnson 

2 

3 

4 

7 

11 

15 

18 

21 

25 

26 

29 

32 

I5'fE M B U • •• ·.·:• ·• •· .. } ................... ·.··········.······.·.········.······.·s.· •. ··.~··.·.d.·.· .. ·.lnan.··. >.•· .. ·.·.ms·······.•.·.•.• .. ·• .. ·.··.'l;.···:.'.•"'•.••.•.·.••.·duel.······•.••.•···.w······.·.Y.IS.•.·•.•.·.i.E.•.·.·.· .. •.···········Add.·• ••.•••••.$2.50.···•·.·.•·.· ·.• ·······fJ··.~.r ..•....•..• p·.··•.~.·••·.··.····.···~.L.}.if.••.·····pa·.· •.·•. YD1.· .• ·••. em.•·.·.·.•·.········d.·•·oe~·.·.·· .. ··. nOt..· • .. > · 
. .. . •. eiil .. • p :•::::}:'••'• . . .. ··•·••·•··.•.·•· •.. • .. • .. •.·.···.•.·N .. ·•·.·.·.· ... ··.·.·.~.on··.··c······.· .. ·.·.··.rn··u··.·.·.·.··.·.·.,·· ..• ·.•.··.· .. ···.• .. ··.·.• .• ·.·.·.• .. •.· .••. ··.· .. ·.·.·.•.• .. •.· ... • :u•t" "' .·.·· · •.••····( :. •. • . ·) i~~ .).•.···•· .,.,...,..,~ •··•• ···•·•··~~ripilnyy~r~UC.; V,ISA'~·M!a•~acccpliii()~<f<1.UMJ9(citalritiail$hjpping.•·•··· 

1 • • > · <••·•·.····•. >···········• <•••··•··•.•• ... ·•·••.·< > .••. :.···················~.·,~. e.~.rL~ .. .'.··~~.·.·.· ..•. :.·. ;,·::-.··.···········.u~·········'.·········.·.·~.·.······.·.··.····6f·············.·.•P" .•. ·.·.·············.·: .. ··.:.·.· ..•. -.Jre .•..•.•..•. ·.···············~ .••... •.·.········~········.····yn······P··········".~.·.·······~·n··.··d····· ... · •. · ...... ~.· •. · ....•... iis1.· •. ·.··JST.··.·.··········· .•.. r.··us·"·····.·.· ..•. r .....••.•..•. ·~.· .... ·.·······.············.·.:.·.·~··.:.································.················~··········· .•..• ~ .••... •.J•.·srn·····.' .• -...••.... · .. ·~.· ..•..• ~.·······.·····o······.·.r .•.. ~ .. ··.~.•• ...••..... ~··········· ...••..••..•.•..•••.•.. 
. NJS·S····on·.: ... ·.····4>j_·.·.l•·.·.~··.·· .. ····o·········M.·.· ..... •iie.·.·.oc·cm··.·· -·t··.• .••. Pri.r.·.·u····.•.:.·· .... ·.·.bip·····rL:····.··········~.····O···in.~ .....•. c.· .. •· .. 'l ... · .. · ..••. ~ .... ·.·.dc··.·3ZS;·····.n·U····'····.·oo.··00·7:·s····.~ .•... ·.:···· .• ·.• .. • .•. • •• ···La.· .. ··•··•··•··. ~o.·.&t·······.··.·.· .•.•..••.. Jm.••• .. ·.·.•.• .. ~ ..•. •.·· .. N·.· ... ··········3: ... ~.~· .. -00~.·· ... •.·····.·.S···· .• · .•..•.....•..•.•. ·.· .. •.·.·.............. ~~~~ •w•.v ...... V<O.uwv .,. J rq~~UC:~~~~-~ot'¥~i1!111ddO~nece•aarilY .. •· 



Page2 -----LoGo ExcHANGE-----~ November 1989 

Logo: Programming Language or 
Application 

I recently returned from the New Zealand Computer 
Educators Conference held in New Plymouth, New Zealand. 
Aside from meeting some delightful people and enjoying 
some wonderful scenery, I came away from the conference 
with a number of new ideas. (Isn't that the reason we attend 
those conferences and workshops?) Most people I talked with 
at the conference who were interested in Logo knew of 
Logo Writer but weren't using it and hadn't yet heard about 
Logo PLUS. At least one person commented to me that 
Logo Writer and Logo PLUS (which I demonstrated during a 
conference session) seemed more like an application than a 
programming language. 

That comment struck a resonant chord with me. I've been 
doing a good bit of thinking lately about programming lan­
guages and their role in education today. Only 10 years ago, 
we thought that every teacher and every student should learn 
to program- in BASIC, since that was almost the only thing 
we could do on our 4K or 16K micros. A couple of years later, 
as Logo became available on machines used in schools, many 
of us chose Logo over BASIC as the programming language 
of choice. We were on the crest of a wave. Students were 
enrolling in programming classes in droves. Everyone was 
sure that programming was the way to go: students would 
learn logical thinking, mathematics and become good prob­
lem solvers- just from learning to program. Those who 
knew how to program would leave high school to find lucra­
tivt;; jobs in business and industry. 

Ah, how times do change. Today, the trend towards 
learning to program has reversed itself. No longer is program­
ming "in." Research has not born out the claims that program­
ming in and of itself- in Logo or any other language -leads 
to better problem solving skills or greater understanding of 
mathematics. Today's students are learning to use word 
processors, databases, spreadsheets, and graphics packages. 

From the time Logo arrived on the educational scene, 
most of us have thought of Logo as a programming language. 
Certainly in early versions you couldn't do much that was 
interesting without writing procedures. And if you did do 
something interesting in the immediate mode, then you often 
couldn't save it. In many cases you couldn't even print it 
Working with Logo meant working with procedures, learning 
syntax and grammar, understanding control and data struc­
tures and learning to debug. Quite simply, it meant program­
ming. 

Today we have LogoWriter and Logo PLUS. These 
versions allow the user to create and save both graphics and 
text and to print the product without writing a procedure. It's 
not uncommon today to encounter a "Logo teacher" who has 
never written a procedure and really doesn't realize the power 
and extensibility of Logo. To that teacher, Logo is not a 
programming language; rather, it is an application. 

As an application package, Logo is still a powerful tool. 
The ability to mix text and graphics on the same screen makes 
it a more flexible product than almost any equivalently priced 
word processor or graphics package on the market. But those 
of us who have been using Logo for many years are a bit 
unnerved by the idea of teaching Logo without teaching 
programming. 

However, the idea of integrating a programming lan­
guage and an application is becoming increasingly common in 
today's software market My telecommunications program 
allows me to write "macros" to log in to a particular telecom­
munications network. The macro is merely a small program. 
HyperCard allows the user to easily create hypertext docu­
ments without programming, but more sophisticated users 
quickly fmd the need to "script." Scripting is, quite simply, 
writing little programs to accomplish specific tasks. Have you 
used a sophisticated database system like FoxBase? Behind 
applications such as this are "command languages." In 
FoxBase, the "command language" is DBASE - clearly a 
programming language. And what about spreadsheets? 
Anyone out there use Lotus? 

There is little question in my mind that the boundary 
between programming languages and applications is blurring. 
Perhaps the new versions of Logo are simply following a 
prevailing trend in the software industry, albeit moving from 
programming language to application rather than the more 
common move from application towards programming lan­
guage. 

Should we be disturbed that many people are treating 
Logo as an application? Does it affect the fundamental 
philosophy behind Logo and Logo-like learning? I think not. 
We can still encourage exploration, discovery, problem solv­
ing, thinking, and creativity whether we write code or use 
Logo as a tool to create products in math or social studies 
classes. And, like the sophisticated applications mentioned 
earlier, soon those who view Logo as an application find 
themselves wanting to do more and thus needing to grow in the 
direction of programming in Logo's extensible environment. 

Sharon Yoder 
SIGLogo/IS1E, 1787 Agate Street, Eugene, Oregon 97403 

CIS: 73007,1645 BITNET: YODER@OREGON 

-



November 1989 -----LOGO EXCHANGE----~ Page 3 

The RT Stuff 
by Tom Lough 

Back in 1982, when I was pasting up the dot matrix 
printed NLX articles by hand, I often ended up with a few 
mches of space right at the end of the columns. Rather than 
leave the space blank, I usually found a right small paragraph 
or one-line filler to insert. 

I happened to be perusing the October 1982 issue of the 
newsletter recently. I noticed one of these fillers right at the 
bottom of page 4. It was right much like rediscovering an old 
friend, as this was one of my favorites. I remembered it was 
right late at night when I pasted up that particular issue, and I 
desperatelywantedafillerforthatspacerightthen. Finally the 
right words came. 

In Logo, as in life, the direction you are heading is 
often much more important than how far you go. 

The words came in from left field, but as soon as I wrote 
them down I knew they were exactly right. Nota word was left 
over. I was left with a sense of accomplishment as I pasted 
them into the right hand column. I left the finished newsletter 
on the table and went right to sleep. 

By now, I'm sure you have noticed the excessiveRTs and 
L Ts scattered throughout the above paragraphs. I just used 
them to make the point. But, whenever I use the RT and LT 
commands, I think about that little filler sentence. 

It is amazing how many incidents in daily life affect the 
direction of events, just as using the RT and LT commands 
affect the direction of the line the turtle draws. If you don't 
believe me, take a look at an old friend. 

TO SQUARE 
REPEAT 4 [ FORWARD 100 RIGHT 90] 
END 

If you chaJ:Ige the 100 to another number, you still get a 
square. But if you change the 90, the effect is quite different. 
I suggest that events in life can be classified similarly. 

The "directional" incidents produce a change in attitude 
or spirit, and do not represent just a little more plodding 
progress toward some well defined but very official curricu­
lum objective. 

"I wonder why it did that?" 

"Hey, that looks interesting!" 

"Could you help me please?" 

"You'll never guess what my program can do!" 

I suspect that effective teachers might have identified 
incidents such as these long ago, but may not have realized the 
significance until later. 

"Remember when you wondered why my turtle didn't 
stop? That got me interested in recursion and .. " 

"One day, you told me my project was interesting. I never 
forgot how good that made me feel. That is one of the reasons 
I got interested in teaching ... " 

"Doyourememberthedayifinallyaskedforhelp? Iwas 
hopelessly stumped and you helped me without embarrassing 
me. That is why I decided to write this book- so I could help 
others •.. " 

"I had fmally gotten my Logo program to do exactly what 
I wanted, and I couldn't wait to show you. You watched, 
understood and appreciated; that made me feel good. Now 
that I am a professional computer programmer, I get that 
feeling often, and I think of you each time ... " 

I believe that Logo and Logo teachers have the RT stuff 
to make a significant difference in the lives of students. I 
believe that it is our RT and duty to do so. 

Perhaps the RT and LT commands can serve to sensitize 
us to the importance of affecting attitudes as well as facilitat­
ing cognitive growth in our students. But, don't forget: Once 
the appropriate direction is set, then it's 

FD 100! 

Tom Lough 
Founding Editor 

POBox 394 
Simsbury, CT 06070 



Page4 -----LoGo ExcHANGE-----~~~~- November 1989 

The Subject Is Poetry 
Teacher Focus: Robert MacDonald 
by Eadie Adamson 

There are many extraordinary teachers who have found 
wonderful ways of incorporating the use of Logo into their 
classroom teaching. To do this seamlessly so that the use of 
the computer becomes a integral part of the learning process, 
not simply an added flourish or something thought of as quite 
separate from the normal course of study. is one of the 
problems many of us are wrestling with today, whether we 
teach in a laboratory or a classroom situation. We do not want 
Logo to be viewed simply as a programming language, but 
ratherasauseful tool which can bereadilyappropriated by our 
students as part of their materials (much like to paint. glue, 
cardboard, and soon) as they worlt on a project assignment. At 
the same time we. do not want to neglect the teaching of 
programming, but rather to incorporate those skills in a 
context meaningful to our students. 

During the past year, Sharon Yoder called my attention to 
the work of one teacher who has been very successfully and 
inventively making this integration of Logo an important part 
of his curriculum in many areas. Robert MacDonald teaches 
a fourth grade class in Grosse Isle, Michigan. Robert has been 
a student in the Distance Learning course in Logo offered 
through ISTE (For more information on these courses, see the 
advertisementinthisissue). AsinstructorfortheLogocourse, 
Sharon came to know Robert's worlt. Sharon forwarded tome 
a number of remarkable samples of Robert's extremely inven­
tive methods of integrating LogoWrilerinto his cmriculum. I, 
in tum, have corresponded with Robert, who has gladly shared 
materials with me as well. It seems appropriate 10 feature 
some of his worlt in this column, since my focus for much of 
the past two years has been on classroom projects using 
Logo Writer. 

This month's column will trace an idea Robert has used 
successfully with his fourth grade classes; an idea which could 
be readily adapted for older students as well. As you read 
through this description, notice how well Robert has incorpo­
rated the use of Logo Writer into the learning process. 

Poetry, poetry, poetry 
Here is how Robert MacDonald desaibes his weD: with 

his class on what he calls "verbal recursion." a form actually 
known as accumulative rhymes. a device used also in prose 
(Harvey. 1961). The form is also sometimes defined as 
"incremental repetition" (Shaw,1972). The recursion Robert 
refers to is actually in the recursive procedure used to generate 

. the poem (see the listing below). The major portion of this 

project is done without the computer, but as you follow though 
his steps, note how interestingly the work culminates in the 
use of Logo and the computer to produce something which 
might have been quite difficult and time-consuming for chil­
dren to produce as a standard wordprocessing task. 

On the fJrSt day-a Monday- I introduced several 
recursive poems - "This Is the House That Jack 
Built" and the wonderful"Drummer Hoff," adapted 
by BarbaraEmberley and illustrated by EdEmberley 
(Emberly, 1967). I asked the children to think about 
how they might go about writing something in this 
style ... On the following day I suggested that we con­
structa verbal recursion of our own. !began with the 
first sentence: "This is the computer that runs all 
night." We fmished it within a very short period of 
time .•• Most children had no problems with seeing 
how the sentences had to run into each other. The 
next day I asked how many of them would like to 
construct their own poem. The class agreed that it 
would make a good writing assignment 

Robert wisely has allowed the children to make the 
choice of assignment, or at least has constructed the situation 
so that the children could feel a part of the process, making the 
decision toworlton thisprojectratherthan being assigned the 
project. This creates an important sense of ownership for the 
student, something which I fmd sttongly desirable for a Logo 
environment. Notice also that the work is still within the 
normal classroom structure. The computer has not made its 
appearance yet in this project 

Robert continues: 

I gave them until the end of the week to turn them in 
to me. Most of the children submitted their work 
within two days. I did a minimum amount of editing 
(largely spelling) and had them ready to hand back 
for our computer lab that Friday. 

The handwritten worlt was then ready for the next step, using 
the computer. 

On Friday I presented the group with a computer 
copy (printout) of "This is the computer that runs all 
night." I asked them to go to the last stanza. I 
requested them to type this stanza- going back­
wards - into the procedure collect ••• that each of 
them bad on their scrapbook disks. All they had to 
do was remove lines of poetry already there and 
substitute the last stanza of the computer poem. It 

r 
I 



:I 

November 1989 -----LoGo ExcHANGE _____ .,_ Page 5 

was an easy task to explain about the use of brackets. 
I merely had to watch over the work of some five 
students. The task before them now was to put in 
their own poems and see if they could get them to 
output successfully. They were very interested in ac­
complishing this. 

Robert had placed a copy of a program, original by David 
Thornburg (Thornburg, 1986), on each child's scrapbook 
disk. The program takes the lists added in collect and prints 
on the screen the stanzas of the poem, adding a line each time. 
(See the end of this article for a revised version I wrote of the 
same program.) Thus, with a minimum of typing, the students 
can produce a computer version of a very long piece of poetry, 
a task which would be beyond tolerance of teacher or student 
if done with a standard word processor. Robert not only had 
some work prepared for the children to use, but he created an 
opportunity to teach them about using Logo lists, an important 
concept that here is elevated to a higher level than the children 
had previously encountered through learning about the use of 
repeat. 

Robert took the children's disks and checked over spell­
ing, making an interesting insight that might merit further 
research: 

I only had four children who had to make some minor 
corrections. It has always amazed me that children 
rarely make silly errors while typing on a computer, 
but cannot prevent them from occurring all over a 
sheet of paper while writing with a pencil. 

On Monday and Tuesday of Thanksgiving week the 
children were required to get two printouts of the 
poem. One they had to mount on a large colored 
sheet of paper- title it and illustrate the contents on 
the margins - the other they handed in to me. 

Robert goes on to describe the attention a bulletin board 
outside his classroom attracted after he displayed this poetry 
assignment. Other students have become interested; his 
colleagues have asked to do the same assignment. "I think we 
have a movement afoot," he comments. Robert again has 
found an interesting way to spread the use of Logo Writer. In 
addition to agreeing to supply other teachers with the pro­
gram, he has volunteered not himself but his students to be 
teachers for the other classes if they need help. What a 
wonderful piece of sharing this represents! The students 
become more secure in their own knowledge as they share it 
with others; teachers begin to see the value of cooperative 
learning and, very importantly, discover that there are things 
they can have their classes do with Logo Writer even if they 
know little or nothing about it themselves. 

What Did They Learn? 
One might ask, indeed, what these children might have 

learned from this exercise. They were not required to do any 
original programming, but they were asked to think about and 
to work out a process. When they entered their work into the 
appropriate procedure in the computer, they were learning 
about using the editor, they had to understand and apply the 
rules about using brackets to create lists, including the need for 
complete sets of matched brackets. They had a chance to 

experience a very complex recursive procedure in operation, 
one which they were free to examine if they wished. The 
exercise actually encouraged them to tinker a bit with the 
program, since they were customizing the collect procedure to 
reflect their own writing. Lastly, they learned about printing 
their work, since the assignment required them, not the 
teacher, to produce those two copies of the completed poem. 

How Does This Fit? 
In a holiday setting, one might try applying this to a 

holiday theme. Robert found an interesting new version of a 
traditional holiday song, ''The Twelve Days of Christmas" 
(Trivas, 1988). A teacher might use the original ''Twelve 
Days ... " as a starting point and ask the children to dream up 
something of their own. For a short exercise, each child might 
be assigned a line to add. In addition to adding the line, a Logo 
illustration might be required. A challenge for you, the 
teacher: a fully "computerized" version might then, as a line 
is added, move to a page illustrating that line, then back to the 
main page to generate the next verse. Can you work it out? 

The Poetry Program 
Students merely need to add the lines to the collect pro­

cedure below. Each line goes in its own set of brackets. To 
see the poem, simply type poetry. The first line of poetry, if 
notfront? [flip] , is a good safety device to know about. Any 
time you use ct (cleartext), precede it by this command. If by 
chance the procedure is typed in the Command Center on the 
Flip side, the procedure will detect that fact and flip to the front 
before proceeding. (front? is a reporter which reports ''true 
if on the front of the page, ''false if on the flip side; ru p mere I y 
turns the page as if one had pressed the flip keys.) 

to poetry 
if not front? [flip] 
ct 
collect 
make "num count :lines 
poem :num 
end 



L 

Page6 -----LoGo ExcHANGE-----~ November 1989 

Logo Ideas, continued 

to poem :num 
if equal? :num 0 
poem :num - 1 

print [This is] 
printlines :num 
end 

[stop] 

to printlines :num 
if equal? :num 0 [print [] stop] 
print item :num :lines 
printlines :num - 1 

end 

to collect 
make "lines [ [The house that Jack 

built.] [The malt that lay in] 
[The cat that ate up] ] 

end 

This exercise gives children a chance to create a long 
poem with very little typing, but at the same time it gives you 
an opportunity to teach about making lists of Logo objects. It 
may be helpful to describe a list as a "package" which is 
created by enclosing in the square brackets. A collection of 
these "packages" will hold the various lines of the poem. Most 
children will not have much trouble with the brackets, but if 
you are in doubt, try changing collect so that it reads like this: 

to collect 
make "lines 

end 

[The house that Jack built.] 
[The malt that lay in] 
[The cat that ate up] 

Instruct your students to delete only the the brackets 
which contains words, and to leave the rest as they were. 
Unlike other versions of Logo, LogoWriter allows you to 
format your procedures and does not change them when you 
leave the editor. 

Here's a challenge! Can you write a procedure which lets 
students type a word (like add), followed by a list of lists, 
which will then create a new list in the collect procedure? 

Here's a starter which should delete the old lists from 
your collect procedure: 

top 
search "to\ 
unselect 
cf 
search"\[ 

collect 
<-the\ and a space make 

it one word (search 
takes a single input) 

unselect select cf 
eol 
cb 
cut 

From here you need to insert the list collected when the 
student has invoked add. If you want to try this but can't solve 
the problem, write to me!! 

References: 
Emberley, Barbara, adaptor and Emberley, Ed, illustrator 

(1967). Drummer Hoff New York: Prentice Hall, Inc. 
Harvey, Sir Paul, ed. (1967). The Oxford Companion to 

English Literature. Oxford: The Clarendon Press. See 
the discussion of "The House That Jack Built," p. 400. 
See also Baring-Gould, William S. and Baring-Gould, 
Ceil (1961). The Annotated Mother Goose. New York: 
Bramhall House. P. 43, note 65. 

Shaw, Harry (1972). Dictionary of Literary Terms. New 
York: McGraw-Hill. See the entry, incremental repe­
tition, p. 200. 

Thornburg, David D. (1986).Beyond Turtle Graphics. Menlo 
Park, CA: Addison-Wesley Publishing Company. See 
pages 97 - 102. 

Trivas, Irene. (1988). A delightful new version of "The 
Twelve Days of Christmas", Emma's Christmas, an old 
song re-sung & pictured. New York and London: Or­
chard Books. 

Eadie Adamson is a Computer Coordinator at The 
Allen-Stevenson School, an independent school for 
boys in New York City, where Logo Writer is used 
intensively both in scheduled computer classes and 
in French language classes. She is also a consultant 
for Logo Computer Systems, Inc., giving teacher 
workshops in New York City, and an instructor at 
Teachers College, Columbia University, where she 
teaches a course in Logo for educators, "Teaching 
Computing to Children Using LOGO."' 

Allen Stevenson School 
132 East 78th Street 

New York, New York 10021 

I 
I 
I 
t 



November 1989 -----LOGO EXCHANGE---__,~ Page 7 

by Diane Miller 

(Note: Some of the information discussed here will not apply 
to all versions of Logo. It generally applies to Apple II Logo 
and LCSI Logo II, and to a lesser extent to Logo Writer, as 
indicated.) 

Although there are many different versions of Logo, each 
with a slightly different set of primitives, every implementa­
tion appears to have some limitations in the primitives avail­
able - i.e. no primitives for certain commonly desirable 
operations. For example, in most (if not all) versions there are 
no commands to draw circles and arcs of a specified size, 
which add immensely to the power and fun of Logo graphics. 
In addition, many of the primitives have built -in abbreviations 
-such as FD for FORWARD- which make Logo much 
easier to use for young children, special-education users, and 
Ph D's who cannot type. But some of the primitives do not 
have abbreviations and are tedious to type, such as .SET­
SCRUNCH, DRIBBLE "PRINTER, and so forth. Many 
users might fmd abbreviations for some of these primitives 
useful. 

There are good reasons for a programming language such 
as Logo to have a fairly minimal set of built-in primitives. For 
instance, it must not occupy too much memory space. And 
since it is an extensible language, users may use existing 
primitives to define their own new customized tool proce­
dures. 

You can customize Logo to your own needs by making 
procedures to draw circles and arcs, define abbreviations or 
otherwise rename commands. For instance you can make a 
simple procedure to create an abbreviation for printing. 

TO PPIC 
PRINTPIC "PRINTER 
END 

TO PS 
PRINT SCREEN 
END 

With one of the above procedures in memory, the user need 
only type PPIC instead of PRINTPIC ''PRINTER in LCSI 
Logo II or PS instead ofPRINTSCREEN in Logo Writer. 

But adding such tool procedures to Logo would seem to 
entail some work. Do you have to type them each time you use 
Logo? Mercifully, no . You can create tool procedures once, 
save them in a file, then load the file each time you need it. But 
wait! There is an even easier way. 

Creating a Startup File 
If these tool procedures are saved in a file with the special 

name STARTUP, they are loaded automatically whenever 
you start Logo. When Logo starts, an introductory screen is 
presented (I will resist calling it a logo), along with the 
message "PRESS RE11JRN." When you press Return, the 
disk is accessed again for some seemingly mysterious pur­
pose, and Logo is ready to go. What is happening is that Logo 
is looking for a file named STARTUP. If it finds this file, it 
reads it into memory just as it would load any other file. (If it 
does not find it, Logo starts with only its built-in primitives 
available.) 

Since the message "PRESS RETIJRN" does not prompt 
the user to switch disks, it is convenient to have the STARTUP 
file on the Logo language disk itself. You cannot put it on the 
original distribution disk because it is permanently write­
protected. But if you can make a working backup copy of the 
disk, you can add a STARTUP file to it. 

Keep in mind that the only sensible use of an original 
master disk, for any software, is to make a backup copy which 
you actually use to run the program. Keep the master disk in 
a safe place for the day when the backup gets zapped or lost 
and you need to make another. Some versions of Logo are 
copy-protected, so the disk-copying utility on the DOS disk 
will not work. Often in these cases a backup can be made with 
a special copying utility such as Copy II Plus (Central Point 
Software). The making of a single backup by the registered 
owner for daily use so that the master may be kept on file is 
completely legal. 

If you don't want to put your STARTUP file on the 
language master disk, you can also put it on a files disk. You 
must then make sure this files disk which has the STARTUP 
file on it is in Drive 1 before you press Return. All ofLogo has 
been loaded when the "PRESS RETURN" message appears. 
All that remains is to look for the STARTUP file. You can 
have as many different STARTUP files as you want to be used 
for different circumstances and users. However, each 
STARTUP file must be located on a separate file disk. 

If you are using LogoWriter, you create a page called 
STARTUP. When you start LogoWriter, that STARTUP 
page is automatically loaded into memory so that you begin on 
the STARTUP page instead of the Contents page. 

Startup Variables and Burying Procedures 
There is a feature which may be used with any Logo file, 

called a startup variable, which gives a list of commands 
which will be executed whenever the file is loaded. A startup 
variable is created with the MAKE command, as is any other 
global variable, but is given the special name STARTUP. All 



PageS -----LOGO EXCHANGE -----1~ November 1989 

Customizing Logo with a Startup File--continued 

current global variables are saved, along with procedures, 
when a SAVE command is given. (If you are using Logo­
Writer, you create a procedure named STARTUP since vari­
ables are not saved with the page.) 

In addition, you can use the startup variable to cause the 
procedures in the STARTUP file to be hidden (buried) after 
they are loaded, so they appear to be built-in Logo primitives. 
This means they do not erase with ERALL, do not clutter up 
the list of procedure titles in memory, and do not SAVE with 
the user's procedures. The only way in which you might 
noti.ce these additional procedures is that they take up some 
memory, and of course you cannot give a user-defined proce­
dure the same name as one of the tool procedures. (ln 
Logo Writer, you bury procedures by using LOADTOOLS to 
get procedures from one page to use on another.) 

There is a potential problem with using buried proce­
dures, as pointed out by Burrowes. If your procedures usc 
buried circle and arc procedures which got into memory via a 
STARTUP file, they will not work if Logo has been started 
without that STARTUP file (or without one which contains 
the needed procedures). This is because the buried procedures 
did not save with the other procedures in your file. So, it is best 
for non-sophisticated users to keep the STARTUP file as 
simple as possible and just use one version. I keep the same 
STARTUP file on the language disk and each files disk, so it 
gets loaded no matter what disk is in when that "PRESS 
RETURN" message comes up. 

One caution: If you already have a STARTUP file but 
want to experiment with others, you may wish to keep a copy 
of the old one in case it contains procedures you may want 
later. The simplest thing to do is to rename it with the 
command: RENA1\.1E "STARTUP "OLDST ARTUP. 

How to Make a Startup File 
1. First check your procedure titles to make sure there are no 

stray procedures in memory which you do not want 
included in your STARTUP fJ.le. Erase any stray proce­
dures with the ERASE command. 

2. Check for stray memory variables in the same way, using 
the command PONS ("print out names"). They may be 
erased with the ERNAME command. 

3. Get the desired procedures into memory by loading them 
from another file or typing them. You might try typing 
some of those given below. 

4. Create the memory variable to bury the procedures by 
typing: 

MAKE "STARTUP [BURYALL] 

5. Then to save the file type: SAVE "STARTUP 

How to Modify a Buried Startup File 
1. Start Logo and let the STARTUP file load. 

2. Type: UNBURYALL 

3. Edit, add, or remove procedures as you wish. 

4. Type: SAVE "STARTUP 

How to Copy a Buried Startup File from One Disk to 
Another 
1. Start Logo and let the STARTUP file load. 

2. Type: UNBURYALL 

3. Put the destination disk into the drive. (A backup of the 
Logo disk or a Logo file disk.) Type: 

SAVE "STARTUP 

Once you have a blank file disk with the appropriate 
STARTUP file on it, you can make extra copies of the disk 
with the Apple II System Utilities Disk, forPro-DOS users, or 
the DOS System Master Disk for DOS 3.3 Users. (You can 
also copy the STARTUP file using the DOS file-copying 
utility.) 

Some Suggested Procedures for a Startup File 
Circles and Arcs 

These procedures give the user a very good set of tools 
which will draw circles and arcs of a given radius, to fit other 
components of a drawing. To draw a circle of a given radius, 
starting from the turtle's present position and heading, with 
turns to the right: 

TO RCIR :RADIUS 
MAKE "X :RADIUS * (3 .14159 / 18) 
REPEAT 36 [RIGHT 5 FORWARD :X 

RIGHT 5] 
ERN "X 

END 

To draw a circle of a given radius, starting from the 
turtle's present position and heading, with turns to the left: 

r 
I 



November 1989 ------LOGO EXCHANGE----~~ Page9 

TO LCIR :RADIUS 
MAKE "X :RADIUS * (3 .14159 I 18) 
REPEAT 36 [LEFT 5 FORWARD :X 

LEFT 5] 
ERN "X 
END 

To draw a circle of a given radius centered around the 
turtle: 

TO CCIR :RADIUS 
MAKE "X :RADIUS * (3 .14159 I 18) 
PENUP 
FORWARD :RADIUS 
RIGHT 90 
PEND OWN 
REPEAT 36 [RIGHT 5 FORWARD :X 

RIGHT 5] 
LEFT 90 
PENUP 
BACK :RADIUS 
PEDOWN 
ERN "X 
END 

(Note: This procedure will draw a circle even if the pen was 
up or in erase or reverse mode, because it contains an explicit 
PENDOWN. For this reason, a CCIR cannot be erased by 
issuing a PENERASE and redrawing the circle. It can be 
erased by changing the pen color to the background color and 
redrawing the circle. It can also be erased by moving the turtle 
to the perimeter- an easy task since you know the radius­
and drawing an RCIR or LCIR in PENERASE mode. The 
procedure as written will also leave the pen down when it 
finishes. 

A more sophisticated CCIR procedure can be written 
which will check the pen's and turtle's state prior to running 
and return them to the same state on finishing: 

TO CCIR :RADIUS 
MAKE "PEN? PEN 
MAKE "SHOWN? SHOWNP 
MAKE "X :RADIUS * ( 3 . 1415 9 I 18 ) 
HIDE TURTLE 
PENUP 
FORWARD :RADIUS 
RIGHT 90 
PENDOWN 
REPEAT 36 [RIGHT 5 FORWARD :X 

RIGHT 5] 
LEFT 90 

PENUP 
BACK :RADIUS 
IF :PEN? "PENDOWN [PENDOWN] 
IF :PEN? = "PENERASE [PENERASE] 
IF :PEN? = "PENREVERSE [PENREVERSE] 
IF :SHOWN? [SHOWTURTLE] 
ERN "PEN? 
ERN "SHOWN? 
ERN "X 
END 

To draw a 90-degree arc of a given radius, starting from 
the turtle's present position and heading, with turns to the 
right: 

TO RARC :RADIUS 
MAKE "X :RADIUS * (3.14159 I 18) 
REPEAT 9 [RIGHT 5 FORWARD :X 

RIGHT 5] 
ERN "X 
END 

To draw a 90-degree arc of a given radius, starting from 
the turtle's present position and heading, with turns to the left: 

TO LARC :RADIUS 
MAKE "X :RADIUS * (3.14159 I 18) 
REPEAT 9 [LEFT 5 FORWARD :X LEFT 5] 
ERN "X 
END 

There are two more useful procedures for variable-length 
arcs, given by Abelson, page 30. To draw an arc of a given 
radius and sweeping a given number of degrees, starting from 
the turtle's present position and heading, with turns to the 
right: 

TO ARCR :RADIUS :DEGREES 
ARCR1 0.174532 * :RADIUS 

:DEGREES I 10 
IF 0 = REMAINDER :DEGREES 10 [STOP] 
FORWARD 0.174532 * 

:RADIUS I 20 I REMAINDER 
:DEGREES 10 

RIGHT REMAINDER :DEGREES 10 
END 

TO ARCR1 :STEP :TIMES 
REPEAT :TIMES [RIGHT 5 FORWARD :STEP 

RIGHT 5] 
END 



I 

Page 10 -----LOGO EXCHANGE ____ ,.... November 1989 

· Customizing Logo with a Startup File--continued 

To draw an arc of a given radius and sweeping a given 
number of degrees, starting from the turtle's present position 
and heading, with turns to the left: 

TO ARCL :RADIUS :DEGREES 
ARCL1 0.174532 * :RADIUS 

:DEGREES I 10 
IF 0 = REMAINDER :DEGREES 10 [STOP] 
FORWARD 0.174532 * 

:RADIUS I 20 I REMAINDER 
:DEGREES 10 

LEFT REMAINDER :DEGREES 10 
END 

TO ARCL1 :STEP :TIMES 
REPEAT :TIMES [LEFT 5 FORWARD :STEP 

LEFT 5] 
END 

Abbreviations 
To send a picture on the screen to the printer: 

TO PPIC 
PRINTPIC "PRINTER 
END 

To turn on the printer to echo the text on the command line 
- useful for POTS or POPS, or just to record commands 
typed: 

TO PRON 
DRIBBLE "PRINTER 
END 

To turn off the printer after PRON: 

TO PROFF 
NOD RIBBLE 
END 

To abbreviate .SETSCRUNCH: 

TO SS :N 
.SETSCRUNCH :N 
END 

SETSCRUNCH changes the aspect ratio of the screen by 
stretching or shrinking turtle steps in the vertical dimension. 
It is useful for adjusting the picture on the screen if you cannot 
achieve enough adjustment with the controls on the monitor. 
It is also useful for situations in which a square on the screen 

. comes out a rectangle on the printer, because it allows you to 

distort the picture on the screen so it prints true. .SET­
SCRUNCH also allows you to draw ellipses with the circle 
commands, or make squares into rectangles. Unfortunately, 
this command is not available in Logo Writer. 

Using the pattern of these last three procedures, any Logo 
command can be renamed/abbreviated. 

Miscellaneous 
If you are working with buried procedures in your work­

space and issue the command UNBURY ALL, you will un­
bury the STARTIJP procedures as well. You can make a 
procedure to selectively rebury the procedures in your 
S T ARTIJP file. Note that any time you change the procedures 
in your ST ARTIJP file, youmustchange their names in the list 
in this procedure. 

TO REBURY. SU 
BURY [RCIR LCIR CCIR RARC LARC ARCR 

ARCR1 ARCL ARCL1] 
BURY [PPIC PRON PROFF SS REBURY.SU] 
END 

(Note that the procedure REBURY.SU can bury itself!) 

References 
Abelson, H. (1982). Apple Logo. New York, New York: 

BYTE Publications, McGraw-Hill. 
Burrowes, S. (1985). Circles, Arcs, and Headaches. The 

National Logo Exchange, Volume 3, Number 5, p. 1. 

Diane Miller 
Guadalupe Private School 

4614 Old Redwood Highway, Santa Rosa, CA 95401 
(707) 546-5399 

• ABout the·· Cover 

~~~~hL~=~~>=~; 
drawitlg was do1u~in FraJ1 Rothkin 's computer class af JHS

. • 211Qu~llsiriNewYoricCity.

l
I
I
l
l
1
l

November 1989 -----LoGo ExcHANGE----~ Page 11

A Logo Melody
by Dorothy Fitch

If you're like me, you need a ruler to draw a straight line!
You love to draw intricate designs in Logo because it is so easy
to make an impressive picture. But Logo can be more than a
tool for making drawings. It can also be a tool for writing
music. Even if you don't consider yourself a musician, you
can compose original music or recreate melodies that you
might not be able to play by yourself on another instrument.

For this column, I chose a traditional round that you can
enjoy throughout the upcoming holiday season. You and your
students don't have to know much about music to enjoy this
project, since it is a fairly simple song. And there are many
possibilities for using it to explore much more. (See the ideas
listed at the end of this column.)

With only a little introduction to the language of music
and some clues, you and your students can figure out every­
thing you need to know to take this song written in musical
notation and turn it into a program written in Logo. You can
use the Copy-Me page at the end of this column, use the
program listing given below as a guide, or you can study the
documentation that comes with your version of Logo. You '11
fmd that this is almost more of a mathematics lesson than a
music lesson. You '11 be exploring fractions, number relation­
ships, and even critical thinking as you collect the information
you need to write the song in Logo.

The Music
The main program in this piece is called DONA, which

directs Logo to the procedure called I, then the procedure
called II, and fmally the procedure called III. Each of these
procedures is divided into two parts, A and B. Each part is a
musical phrase, which corresponds to a sentence in English­
an idea with a complete thought

Dividing the song in this way makes musical sense, and
it also helps keep each of the procedures a manageable length.
Imagine the problem offmding a wrong note if the entire piece
were written in one procedure! (Keep this strategy in mind
when you create graphics programs too!)

The procedure for each phrase is the one that actually
contains instructions to play the notes. The command NOTE
takes two inputs-the pitch of the note (how high or low it is)
and its duration (how long it lasts). Enter the procedures
below or use the Copy Me page to figure out the procedures

on your own. In the Logo notation used in this column, note
names that include a ' are in a higher octave and ! is a symbol
for flat. Consult a friendly music teacher if your curiosity
extends beyond what can be included here!

You can change the tempo (speed) of the music by
altering the number values for duration. The lower the
number, the shorter the duration.

Program Listing for Logo PLUS:
TO DONA
I

II
III
END

TO I

IA
IB
END

TO II
IIA
IIB
END

TO III
IIIA
IIIB
END

TO IA
; 1
NOTE F
NOTE c
NOTE A
; 2
NOTE G
NOTE c
NOTE B!
; 3
NOTE A
NOTE G
NOTE F
; 4
NOTE F
NOTE E
END

30
30
120

30
30

120

60
60
60

60
120

Page 12 -----LoGo ExcHANGE----~ November 1989

Beginner's Corner--continued

TO IB TO IIB
; 5 ; 13
NOTE D' 60 NOTE D' 60
NOTE C' 30 NOTE D' 120
NOTE B! 30 ; 14
NOTE A 30 NOTE C' 60
NOTE G 30 NOTE C' 120
; 6 ; 15
NOTE C' 90 NOTE C' 30
NOTE B! 30 NOTE B! 30
NOTE A 60 NOTE A 60
; 7 NOTE G 60
NOTE A 30 ; 16
NOTE G 30 NOTE F 180
NOTE F 60 END
NOTE E 60
; 8 TO IIIA

NOTE F 180 ; 17

END NOTE F 180
; 18

TO IIA NOTE E 180
; 9 ; 19
NOTE C' 180 NOTE F 90
; 10 NOTE G 30
NOTE C' 180 NOTE A 30
; 11 NOTE B! 30
NOTE C' 60 ; 20
NOTE B! 60 NOTE C' 60
NOTE A 60 NOTE c 120
; 12 END
NOTE A 60
NOTE G 120
END

Changes for Terrapin Logo for the Apple and Commo­
dore Logo:

To use music in Terrapin Logo, you frrst need to load the
music file from your Logo Utilities Disk. Type READ
"MUSIC and press Return. Mter the music procedures are
loaded into your Logo workspace, you'll need to add the
following procedure. To enter the editor, type TO and press
Return.

Type the following lines, making sure to use the correct
punctuation and spacing. Press Return at the end of each line.
Press Control-C when you are through to defme the new
procedure.

TO NOTE :PITCH :DURATION
.CALL.2 :TONE :PITCH - :FUDGE

:DURATION * :BASE.PERIOD I :PITCH
END

TO IIIB TO A
; 21 OUTPUT 880
NOTE B! 60 END
NOTE B! 120
; 22 TO B!
NOTE A 60 OUTPUT 932.3
NOTE A 120 END
; 23
NOTE E 30 TO C'
NOTE G 30 OUTPUT 1046.52
NOTE C' 60 END
NOTE c 60
; 24 TO D'
NOTE F 180 OUTPUT 1174.64
END END

TO C
OUTPUT 523.26
END

TO E
OUTPUT 659.26
END

TO F
OUTPUT 698.46
END

TO G
OUTPUT 784
END

You also need to assign different numbers to the pitches.
Use the following numbers instead of those that appear in the
procedures for the note names above.

c
A

E

B!

67.1866
39.9711
53.339
37.73

Changes for PC Logo:

F

C'
G
D'

50.3481
33.6175
44.8607
29.9535

Use the command TONES insteadofNOTE. Divide each
of the pitch frequencies in half. For example, the procedure
for C could be written:

TO C
OUTPUT 523.26 I 2
END

November 1989 -----LOGO EXCHANGE----~ Page 13 .I

Use 6 for the quarter note duration instead of 60. Adjust the
other values accordingly.

Changes for Logo Writer:
Use the command TONE instead of N01E. Use 40 for

the quarternote duration instead of 60. Ad just the other values
accordingly. You may have to adjust some of the note
numbers to make them more in tune. The higher the number,
the higher the pitch of the note. Consult your documentation
for the exact note numbers to use.

Other Ideas for Dona Nobis Pacem
Once your computer can play this song, you and your

students can try some of these ideas:

• Get two or three computers playing it as a round (each
part of the round begins when the previous one gets to the
beginning of the next section, marked I, II and Ill)

• sing along with the computer to help learn the song
• Play an instrument (flute, recorder, violin, etc.) in around

with the computer
• Practice playing an autoharp or guitar using the chord

symbols F, C7 and Bb
o Think of as many English words as you can that have the

same root as 'Dona' and 'Pacem'
o Find the word for 'Peace' in as many foreign languages

as you can
• Include this song in your school's holiday program!

Dorothy Fitch has been the Director of Product
Development at Terrapin, Inc. She first become
involvedineducationaltechnologyin 1981 when the
school where she taught music received its first
computer. Since that time, as a consultant she has
provided schools with inservice training, curriculum
development and software customization; taught a
number of college courses; and directed a computer
classroom for teachers and students. She has also
coauthored Kinderlogo, a single keystroke Logo
curriculum for young learners, and created the Logo
Data Toolkit. Through her work at Terrapin, she has
presented at many local, regional and national con­
ferences, edited many of Terrapin's curriculum
materials, and brought Logo PLUS to life.

She can be contacted at Terrapin's new address:

Terrapin.Logo. Inc.
has moved to a new address;
They can now·re reached at

· 400 Riverside
Portland, Maine 04103

207~878-8299

Introduction to Programming in Logo
Using Logo Writer The turtle moves ahead.

Introduction to Programming in Logo
Using Logo PLUS.

Training for the race is easier with
ISTE's Logo books by Sharon
(Burrowes) Yoder. Both are designed
for teacher training, introductory
computer science classes at the sec­
ondary level, and helping you and
your students increase your skills
with Logo.

You are provided with carefully
sequenced, success-oriented activi­
ties for learning either Logo Writer or
Logo PLUS. New Logo primitives
are detailed in each section and
open-ended activities for practice
conclude each chapter. $14.95

Keep your turtles in racing condition.

ISTE, University of Oregon
1787 Agate St., Eugene, OR 97403-9905
ph. 503/686-4414.

r

Page 14 -----LOGO EXCHANGE -----1~ November 1989

source unknown DenZil Nobis P21cem

I F C7 j F C7 Bb F

Iii! J) J I t)a I {;l J I J J I f{t@l f=~J I
I U vb. Do- nZ~, no- JS, pZ!- cem, pa-cem; do- na r.o- bis

C7 F IIF C7 F C7

~·~ ® I J. I F' I I
,>=<0;, J I J J , .. Fi

7 pa cem. Do nZ! no- bis pa-cem;

Bb F c~ F lliF C7

~~ r r I • f I tf J J I ,L I 1 I j, I
13 do-na no-bis pa cem. Do na

c~ F 'r r 11 a. II
~

pa cern. 19 no - bis pa-cem; do-na no-bis

Nobody knows who wrote this song. It is a three-part round and the Latin words mean "Grant us peace."

With a bit of detective work, you can write this song in Logo. To play a note, you need to know two things-the pitch of the
note (how high or low it is) and its duration (how long it lasts). The clues on this page will help you figure out this information.
When you know these two things about each note, you are ready to use the NOTE command and combine them to make the whole
song.

Clue# 1: There are 3 beats in every measure. (A measure
is the group of notes between the vertical bar lines. For
example, the firstmeasuregoes with the word 'Do-na' and has
three notes.)

Clue #2: This chart shows the 5 different types of notes
in this piece and how long the sound lasts for each note. Part
of this chart is already filled in for you. See if you can fill in
the rest of the durations by looking at the music and seeing
how the notes fit together in a measure.

Clue #3: Here is a chart that tells you the names of the
notes you will need for this piece. The ' at the end of two note
names indicates that it is a high sounding note. The ! after the
B indicates that it is a flat note (a black key on a keyboard).

When you know the pitch and duration of each note, use
the NOTE command like this:

Note

;
J
J
d
J.

Clue #2

Name Duration

Eighth note
(two ean. 'bt eo:ua.tettd.)

Quarter note 60

Dotted quarter note

Half note

Dotted half note

Clue #3

NOTE pitch duration
(for a quarter note C)

Example: NOTE C 30
Notes needed for Dona No b:is Pacem

Ask your teacher for help in combining the Logo com­
mands into a Logo procedure. Only put 4 measures of
notes in the same procedure. That will make it much easier
to fix your program if you fmd a bug! Have fun! c E

An LX Copy Me! Page

F G A B! C' D'

November 1989 -----LOGO EXCHANGE----~ Page 15 .

Alphabet Adventures
by Judi Harris

Some classroom activities are methodological staples,
like the quart of milk, loaf of bread and laundry detergent that
my aunt Esther always asked us to bring her when we went to
the grocery store. These lesson formats survive, while educa­
tional fads come and go, because they are simple, philosophi­
cally non-partisan, and intrinsically engaging.

As the November and/or December school holidays
approach, perhaps many of you will decide to carry on the
pedagogical tradition by giving your students hidden word
matrices, lotto games, crossword puzzles, or similar classic
learning activities to do. One such popular pursuit is what has
been called an alp habit; a word from which smaller words can
be formed by rearranging component letters.

Perhaps you remember being asked to do this with the
words THANKSGIVING or CHRISTMAS when you were a
student The goal is usually to form as many subwords as
possible from the letters in the alphabit. making sure that the
words constructed do appear in the dictionary. As a teacher,
you may now notice that this is an effective way to encourage
spelling practice, vocabulary exploration, and collaborative
student efforts. Some simple Logo tools may assist this time­
tested educational activity, so that your students can concen­
trate fully upon forming and researching words, instead of
dividing their attention between such exploration and the
mechanics of playing this sort of educational game.

Choosing Challenges
One easily-amended Logo tool procedure can store al­

phabits with which to work.

TO WORDS
OUTPUT [JURISDICTION QUALIFICATION

HEMOGLOBIN ENIGMATIC NEVERTHELESS
SEDENTARY HORSERADISH UNEMPLOYMENT
SATISFACTION ADVENTURE COMPLEXITY
DANDELIONS]

END

Another tool, used in tandem with WORDS, can direct
the computer to choose an alphabit with which to challenge
the student The well-known PICK procedure will do this
nicely.

TO PICK :OBJECT
OUTPUT ITEM (1 + RANDOM COUNT

:OBJECT) :OBJECT
END

These two tools can be combined in a number of ways,
such as

PRINT PICK WORDS

to which the computer may respond

SATISFACTION,

or

MAKE "ALPHABIT PICK WORDS

if the choice should be retained as the value of the global
variable ALPHABIT.

Lexicographic Requests
To facilitate experimentation with the letters of an al­

phabit, the computer can check to see that subwords that a user
forms are indeed only comprised of letters contained in the
alphabit itself, and keep a record of all such subwords formed.

The superprocedure BEGIN randomly chooses an al­
phabit challenge. (Please note that all procedures are written
in Logo Writer 2.0, but can easily be adapted to function with
any full-featured Logo).

TO BEGIN
cc
MAKE "ALPHABIT PICK WORDS
MAKE "SUBWORDS []
SOLUTIONS
HT
CT
PRINT SENTENCE [Please spell a word

using some of the letters in:]
:ALPHABIT

CD
MAKE.WORDS.FROM :ALPHABIT
COMPARE.WITH.LIST.FOR :ALPHABIT
END

The subprocedures MAKE.WORDS.FROM and
TEST.LETfERS.IN prompt the alphabetic explorer to form
words, automatically checking them against the alphabit's
component letters before committing user-generated sub­
words to a list of successes.

TO MAKE.WORDS.FROM :WORD
TYPE [YOUR WORD?]
MAKE "SMALLWORD FIRST READLISTCC
IF :SMALLWORD = "q [STOP]
TEST.LETTERS.IN :SMALLWORD :WORD

MAKE . WORDS . FROM :WORD
END

r

Page 16 -----LOGO EXCHANGE ------l~ November 1989

Logo Linx--continucd

TO TEST.LETTERS.IN :SUBWORD :WORD
IF EMPTY? : SUBWORD [MAKE "SUBWORDS

SENTENCE :SUBWORDS :SMALLWORD
STOP]

IFELSE MEMBER? (FIRST :SUBWORD) :WORD
[MAKE "WORD REMOVE (FIRST :SUB­

WORD) :WORD] [TRY.AGAIN (FIRST
:SUBWORD) STOP]

TEST.LETTERS.IN (BUTFIRST :SUBWORD)
:WORD

END

The Letter of the Lexicographic Law
As you can see, both of these procedures are written using

tail-recursive structures, one nested within the other.
MAKE.WORDS.FROM prompts the user repeatedly for
subwords; TEST.LETIERS.IN checks their entries against
the letters from the original alphabit Allison Birch's RE­
MOVE tool is especially helpful in this application for making
sure that students use only the letters contained in the alphabit.

TO REMOVE :ITEM :OBJECT
IF EMPTY? :OBJECT [OUTPUT :OBJECT]
IF :ITEM= (FIRST :OBJECT) [OUTPUT

BUTFIRST :OBJECT]
IF LIST? :OBJECT [OUTPUT FPUT (FIRST

:OBJECT) REMOVE :ITEM BUTFIRST
:OBJECT]

OUTPUT WORD (FIRST :OBJECT) REMOVE
:ITEM BUTFIRST :OBJECT

END

If an error of this type is made, TRY.AGAIN gives the user
specific feedback on the nature of his/her lexicographic trans­
gression.

TO TRY.AGAIN :LETTER
PRINT (SENTENCE [Sorry! There aren't

enough] WORD :LETTER "'s [in]
:ALPHABIT [to spell] :SMALLWORD)

CD
END

Monitored Musing
Once the user decides that they would like to stop entering

subwords, they can type 'q', which is recognized in
MAKE.WORDS.FROM as the cue to return to the last line of
BEGIN, and execute COMPARE.WITH.LIST.FOR
:WORD, which provides feedback on how many subwords
were correctly formed during the session.

TO COMPARE.WITH.LIST.FOR :WORD
CT
PRINT (SENTENCE [You have formed]

COUNT :SUBWORDS [words from] WORD
:ALP HABIT " .)

CD
PRINT (SENTENCE [There are] THING

:ALPHABIT [words with four or more
letters that can be made from the
word] WORD :ALPHABIT ".)

CD
PRINT SENTENCE [To see a list of

these subwords, type CT LOADTEXT]
WORD "" :ALPHABIT

CD
PRINT [To see a list of your words,

type CT PRINT WORD :SUBWORDS]
END

The words themselves can act as global variable names,
each storing the current number of component words that have
been correctly formed from alpha bit letters. In this case, these
values are assigned in a SOLUTIONS procedure (called in
BEGIN), and refer only to subwords of four or more letters.

TO SOLUTIONS
MAKE "JURISDICTION 78
MAKE "QUALIFICATION 81
MAKE "HEMOGLOBIN 60
MAKE "ENIGMATIC 48
MAKE "NEVERTHELESS 73
MAKE "SEDENTARY 80
MAKE "HORSERADISH 79
MAKE "UNEMPLOYMENT 79
MAKE "SATISFACTION 57
MAKE "ADVENTURE 76
MAKE "COMPLEXITY 61
MAKE "DANDELIONS 79
END

The number of user-generated subwords can therefore be
compared with current across-user totals. If the student would
like to see a list of their words, or a screen of possible
subwords, they can access these by following on-screen
directions printed with lines 7 and 9 of
COMPARE.WITH.LIST.FOR :WORD. To conserve mem­
ory space and expedite tool execution time, lists of possible
subwords are stored in separate text files formed with a word
processor and accessed with the LOADTEXT command.

--~

I

November 1989 -----LOGO EXCHANGE ___ _....,.. Page 17

Alphabits in Action
It is a testament to the power of a good idea and the

versatility of Logo text primitives that rich spelling and
vocabulary exploration such as this can be structured and
supported with just 9 tool procedures. The explorative envi­
ronment that they can create for users is reflected in the
following sample session.

----------------ALPHABIT 5----------------
Please spell a word using some of the
letters in: QUALIFICATION

Type BEGIN to start game; Q to quit.
YOUR WORD? aqua
YOUR WORD? coin
YOUR WORD? facial
YOUR WORD? flaunt
YOUR WORD? tail
YOUR WORD? uncoil

----------------ALPHABIT S----------------
Please spell a word using some o.f the
letters in: QUALIFICATION
Sorry! There aren't enough
l's in QUALIFICATION to spell quill

TvDe BEGIN to start game; Q to quit.
YOUR WORD? q_uill
YOUR WORD? q

---------------~PHABITS----------------
You have formed 3 words from
QUALIFICATION.
Ther~ are 81 words ~th four or more
letters that can be Made from the word
QUALIFICATION.
To see a. list of these subwords , type
CT LOADTEXT "QUALIFICATION
To see a list of your words, type CT
P:RIRT : SUBWORD S

CT
LOADTEXT "QUALIFICATION

----------------ALPHABITS----------------
QUALIFICATION

acquaint coil finical natal
acquit coin flat nautical
alit cola flaunt quail
aloft colt flint quaint
anal count flit quilt.
a nil cult foal quint
antic facial font quintal
aqua fact foul q'llit
atonal faction fount quoit
aunt .factional incult quota
caftan factual into tail
canal fail laic talc
cant .fain licit talon
cation faint lift toil
cilia .fatal lint tonal
clan fault lion tonic
clout .fiat loci tuna
coal fiction loft tunic
coat .fictional loin uncial
coati finial nail uncoil
unfata.l

The 12 text files and tool procedures that were used to

develop this language arts Logo application can be obtained in
diskette fonn from the author. If this is your preference, please
send her a self-addressed, sufficiently stamped diskette mailer
with a 5.25" diskette inside.

References
Birdt, A. (1986). The Logo project book: Exploring words and lists. Cambr­

idge, MA: Terrapin, Inc.
Manchestcr,R. B. (1978). Tlu!2ndmammothboolcofwordgames.New York:

Han Publishing Company.

Judi Harris
621F Madison Avenue, Charlottesville, VA 22903

CIS: 75116,1207 BitNet: jbh7c@Virginia

I Page 18 -----LOGO EXCHANGE---~~ November 1989

by Bill Craig

I have been very interested in the survey and graphing
tools thathaveappearedrecentlyin the Logo literature. Stager
(1988) and Upton (1988) have described procedures for
surveying and graphing written especially for Logo Writer. I
had interested a teacher at my school in using Upton's Survey
procedures to conduct a poll of her class and then graph the
results using the Bar, Pie, and Line graph tool procedures. As
a whole group activity, the class wrote a set of questions which
were entered into the computer by the teacher. I assumed that
the procedures would allow the questions to be saved on disk
and then answered at a later time. I then discovered a unique
weakness of theLo go Writer version of Logo. The contents of
defined variables are not saved on a page in the same way that
those contents are saved in a Terrapin Logo file. The result
was that the questions and answers that the class had designed
for the survey were erased as soon as the computer was turned
off. The survey procedures are great tools but they lost some
of their luster for me when I could not enter questions one day
and ~ave students answer them the next. What follows is my
solution to the problem. It's not pretty, but it works.

The main procedure is START which initializes question
and answer lists, asks the survey maker to name the survey,
enter questions which are saved under the variable
:QUESTION.LIST and answers which are saved under
:ANSWER.LIST. As I have written the procedures, the
survey is limited to a total of 26 answers with no limit on
questions. The user should also know that no more than 5
answers will fit on the screen with the question displayed.

TO START
SET.UP
INIT ALPHABET
INIT.VARS
INIT.SURVEY
GET.QUESTIONS :N 1
SAVE
END

TO SET.UP
RG
CT
HT
END

TO INIT.VARS
MAKE "QUESTION.LIST [)
MAKE "ANSWER.LIST []

MAKE "NUMBER.LIST []
END

TO INIT.SURVEY
PRINT [WHAT IS THE NAME OF YOUR

SURVEY?]
MAKE "TITLE READLIST
PRINT [HOW MANY QUESTIONS WILL YOU

HAVE?]
MAKE "N FIRST READLIST
MAKE "NUMBER.LIST FPUT :N

:NUMBER. LIST
END

TO INIT :LIST
IF :LIST=[] [STOP]
MAKE FIRST :LIST 0
INIT BUTFIRST :LIST
END

TO ALPHABET
OUTPUT [A B C D E F G H I J K L M N 0

P Q R S T U V W X Y Z]

END

TO GET.QUESTIONS :N :COUNT
SET.UP
IF :N = O[STOP]
(PRINT [WHAT IS QUESTION #] :COUNT

(?])
MAKE "Q READLIST
MAKE "QUESTION.LIST LPUT :Q

:QUESTION.LIST
PRINT [HOW MANY ANSWERS?]
MAKE "NA FIRST READLIST
MAKE "NUMBER.LIST LPUT :NA

:NUMBER.LIST
CT
PRINT :Q ANSWER.LIST :NA 1
GET.QUESTIONS :N-1 :COUNT+1
END

TO ANSWER.LIST :N :COUNT
IF :N= 0 (STOP]
(PRINT [WHAT IS ANSWER#] :COUNT[?])

MAKE "A READLIST
MAKE "ANSWER.LIST LPUT :A

:ANSWER.LIST
ANSWER.LIST :N-1 :COUNT+1
END

November 1989 -----LOGO EXCHANGE----~ Page 19

Once all questions and answers have been entered, SAVE
is called. This creates a new page named by the title of the
survey, flips to the back of the page, and prints a procedure
QUESTIONS which contains the contents of
:QUESTION.LIST and a second procedure ANSWERS
which contains the contents of :ANSWERLIST.

TO SAVE
NP FIRST :TITLE
FLIP
BOTTOM
PRINT [TO QUESTIONS]
(PRINT [OUTPUT] CHAR 91

:QUESTION.LIST CHAR 93
PRINT [END]
PRINT [TO ANSWERS]
(PRINT [OUTPUT] CHAR 91 :ANSWER.LIST

CHAR 93)
PRINT [END]
PRINT [TO NUMBERS]
(PRINT [OUTPUT] CHAR 91 :NUMBER.LIST

CHAR 93)
PRINT [END]
END

The newly created page can now be used to answer the survey
questions. To start, simply enter BEGIN:

TO BEGIN
INIT
ALPHABET
RESULTS
END

VOTE sets all the totals to 0 and repeats the survey
questions to as many voters as there are to be polled. When all
voters have been surveyed, the totals are displayed through the
RESULTS procedure.

TO VOTE
SET.UP
INIT.VOTE
PRINT []
PRINT []
REPEAT :N

[CT MAKE "AI :AI+1
ASK.QUESTIONS
MAKE "QCOUNT :QCOUNT +1
WAIT 15]

GO.ON
END

TO INIT.VOTE
MAKE "QCOUNT 1
MAKE "ACOUNT 1
MAKE "N FIRST NUMBERS
MAKE "AI 1 MAKE "AN 0
END

TO GO.ON
cc
TYPE [PRESS C TO CONTINUE]
MAKE "KEY READCHAR
IFELSE :KEY = "C

[CC BEGIN]
[RESULTS]

END

TO ASK.QUESTIONS
PRINT []
MAKE "IN 1
PRINT ITEM :QCOUNT QUESTIONS
MAKE "NA ITEM :AI NUMBERS
REPEAT :NA

[PRINT [] PRINT []
(PRINT (:IN[-] ITEM :ACOUNT
ANSWERS)
MAKE "ACOUNT :ACOUNT +1
MAKE "IN :IN +1]

GET.ANSWER
MAKE "AN :AN + :NA
END

TO GET.ANSWER
cc
TYPE [TYPE THE NUMBER OF YOUR CHOICE

AND PRESS RETURN.]
MAKE "ANS FIRST READLIST
MAKE "ANS. COUNT THING ITEM (: ANS +

:AN)
ALPHABET
MAKE "ANS.COUNT :ANS.COUNT +1
MAKE ITEM (:ANS + :AN) ALPHABET

:ANS.COUNT
END

TO RESULTS
SET.UP
MAKE "TCOUNT 1
MAKE "ACOUNT 2
PRINT []
MAKE "IN 1
MAKE "QCOUNT 1
REPEAT FIRST NUMBERS [TOTALS]
END

Page 20 -----LOGO EXCHANGE ___ __,,... November 1989

Survey and Graphing Tools--continued

TO TOTALS
CT
PRINT ITEM :QCOUNT QUESTIONS
PRINT []
REPEAT ITEM :ACOUNT NUMBERS

[(PRINT ITEM :TCOUNT
ANSWERS [-] THING ITEM :TCOUNT
ALPHABET)

MAKE "TCOUNT :TCOUNT +1]
MAKE "QCOUNT :QCOUNT +1
MAKE "ACOUNT :ACOUNT +1
GO.ON
END

These procedures are good examples of what is called
"winning ugly." In other words, I do not think they will be
used as examples in any future computer science textbooks.
But the procedures work and serve the instructional purpose
for which they were designed. Students are now able to take
the survey results and use the graphing tools to experiment
with how best to display the information they have collected.
And that's good enough for me.

References
Stager, Gary. (1988). Another Bunch of Election Stuff. Logo

Exchange, 7 (1).
Upton, Mary. (1988). Public Domain Graphing Tools. The

Computing Teacher, 16 (2).

Bill Craig
4111 Forest Hill Ave.
Richmond, VA 23225

.

C~n for Prese~~ti~~~ >···· ..
.•..•...• ·.·•••·•••·····. for the ·····•·•Great Lakes/East.·Coast··

··. · ... ·· .. · · .. ·· ...

· · · ··•••••·•••· fjogo.•.C()nfere~c~.• /•·········
.

.. ·· .. ··. · ... _ . .

Sp~l)sor~ ~y(The EducationalCorr1puter •··•· > •.• .• •.·•.•••·•· ·. •
•·•· .· • ••·•• ·• < ••..• ···•· ••••• ·• •• •· ·• . • ·. Consortiuill of OhiO (ECCO)< · ...

Where: Clevelarid, Ohio
When: May4. 5th,J990. . .··

·(Preconference workshops on MayJ~)

Categories of presentations:
Poster Presentations:

These sessions will offer you an opportlln.ity to share a particu­
lar idea. Threepresentors will be scheduled eaCh hour. Presentations
should cover specific· teaching ideas, lesson plans, cir classroom
activities .• An Apple lie or lie computer and appropriate monitor will
be made available during the session.

Session Presentations:
These sessions will be approximately an hour long. Presenta­

tions should coverclassroom ideas, research project reports, innov a­
tive uses of LOgo, and Logo connections~ ·• An: Apple lie· or lle,
overhead projector, and appropriate display 5creen will be made
available;

PreConference Workshops;
These workshops will be six hours in length and will be held on

May 3rd. Workshop topics should go beyond beginning turtle
graphics and offer participants new ideaS and challenges. Either ffiM
or Apple equipment will be available.

Conference Workshops:
These workshops will be held during the conference and will be

approximately 3 hours in length. WorkShops can cover either
beginning()r advanced ideas; but should be Iilni.ted to material that
can be meaningfully presented in a hands-00. folmat in the allotted

time. EitherffiM or Apple equipment available. •

Presentation Proposals are due
·······November 15th, 1989

. : . : : .. : ::.:: : :: .: ·: :_ -~

· •..•••. Contact ECCO. for forms to use to submit ..
preSentation ideaS~

ECCO
1123 S.O.M. CenterRoad.

Cleveland, OH 44124
216-461 ~osoo

November 1989 -----LOGO EXCHANGE---~~ Page 21

Hypermedia Castle
by Glen L. Bull and Gina L. Bull

Hypermedia is a term which is appearing with increasing
frequency in educational computing. Hypermedia refers to
the ability to go directly from any point in a medium to any
other place in the medium. If this column were a hypermedia
application, you would be able to touch the word "hyperme­
dia" to see an expanded definition and more examples.

Hypercard is the best-known example of a hypermedia
program, but it is possible to develop certain types of
hypermedia applications in Logo. In previous issues of the
Logo Exchange, Eadie Adamson has described hypertext
applications that she has developed for LogoWriter. Hy­
pertext is one type of hypermedia application that involves the
ability to go directly from one place in a body of text to another
location.

Hypermedia applications can involve graphics as well as
text For example, in a hypermedia application it might be
possible to touch Texas in order to see an expanded view of
that state. How is this done? In Hypercard this could be done
with the electronic equivalent of two index cards. A map of
the United States might be on one card, and a map of Texas on
the other card. Touching Texas on map of the United States
would cause the computer to shift from the United States card
to the Texas card.

The GE1PAGE command inLogoWritercan be used in
much the same way. The terminology is different. Hypercard
uses the descriptor card while Logo Writer uses the term page,
but the effect is similar. In the following example, a Logo
castle will be used to develop a sample hypermedia applica­
tion. In this example, the turtle can travel from place to place
in the castle. Typing the proper command will cause the turtle
to travel to an expanded view of its current location. Longtime

readers of the Logo Exchange will recognize this castle from
an earlier column dating from the days in which the magazine
was printed on a dot matrix printer.

M
0
A
T

The turtle needs some means of identifying its
location in the castle. In Hypercard this could be accom­
plished by placing an invisible box around each area of the
castle. In Logo Writer we can accomplish the same result
by placing an invisible grid across the entire screen.

0 1 2 31 4 5 6 7 8 9
10 11 i 12 13114 15 16 17 18 19

20 ········•········ 21122 23 24 25 26 27 28 29
30 ········•········ 1

29 31132 33i 34l35i 36i 37 38
········•···-···•········•········• .. ····-- 49 40 41 42 43! 44i 45! 46i 47 48 ..

1 59 50 51 52 53j54j 55j 56j 57 58
60 61 62 "63"!""64·r·6sT"66"i""67" 68 1 69

• • 0 •

1

79 70 71 72 73 74 75 76 77 78
80 81 82 83184j 85 86 87 88 89 ····-·•········ 98 99 90 91 92 931 94 ! 951 96 97

This grid will be invisible in the completed design.
Drawing the grid on the screen during creation of the castle
will facilitate the design process. The following STARTUP
procedure automates the process of drawing a grid. The
version shown is for Logo Writer on the Apple II. If you are
using LogoWriter on an IBM, substitute 320 for
Screen Width and 190 for ScreenHeight in STARTUP.

Page22 -----L 0 G 0 EXCHANGE -----fl~~· November 1989

Logo & Company--continued

TO STARTUP
MAKE "ScreenWidth 280
MAKE "ScreenHeight 180
MAKE "Rows 10
MAKE "Cols 10
MAKE "BlockWidth

:ScreenWidth I :Cols
MAKE "BlockHeight

:ScreenHeight I :Rows
MAKE "HorizontalOffset

(:ScreenWidth I 2) - 1
MAKE "VerticalOffset

(:ScreenHeight I 2) - 1
END

The DrawGrid procedure uses the utility programs
PositionTurtle, Line, and Over. Type DrawGrid to see a
grid drawn across the screen. You can use the lines drawn as
boundaries for your design. This grid program draws 100
blocks on the screen, numbered 0 through 99, as shown in the
diagram above.

TO DrawGrid
STARTUP
PositionTurtle
REPEAT :Cols [Line :ScreenHeight

Over :BlockWidth]
PositionTurtle
RIGHT 90
REPEAT :Rows [Line :ScreenWidth

Over :BlockHeight]
LEFT 90
END

TO PositionTurtle
PU
SETPOS LIST :HorizontalOffset * -1

:VerticalOffset * -1

PD
END

TO Line :Length
FORWARD :Length
BACK :Length
END

TO Over :Distance
PU
RIGHT 90
FORWARD :Distance
PD
LEFT 90
END

The Block? procedure allows us to see the location of the
turtle on the screen. This procedure works whether or not the
lines are actually drawn on the screen. Try moving the turtle
around the screen. Type SHOW Block? to see which block
the turtle is in.

TO Block?
MAKE "X INT (XCOR +

:HorizontalOffset) I :BlockWidth
MAKE "Y INT (YCOR +

:VerticalOffset) I :BlockHeight
MAKE "Y (:Rows - 1) - :Y
OUTPUT WORD :Y :X
END

Once we are able to tell the block on the grid on which the
turtle is located. it will be possible to determine whether the
turtle is in the tower or the drawbridge or the moat. First create
procedures which list the blocks associated with each loca­
tion. For example, by examining the diagram carefully, you
will see that Blocks 11, 21, 31, 12, 22, and 32 are located in the
tower of the castle. Create a procedure that looks like this.

TO Tower
OUTPUT [11 21 31 12 22 32]
END

Then create similar procedures for the courtyard, the ram­
parts, the moat, and the drawbridge. For example, the draw­
bridge procedure would look like this.

TO Drawbridge
OUTPUT [84 85 94 95]
END

These procedures will tell where the turtle is, through use
of the Where? procedure. To fmd where the turtle is in the

r
!

November 1989 -----LOGO EXCHANGE----~ Page 23

castle, type SHOW Where? They will tell where tell where
the turtle is even if it is hidden. You may want to determine
how accurately you can navigate from one location to another
with the turtle hidden. You can use the Where? command to
check your progress as you move forward.

TO Where?
MAKE "Location Block?
IF MEMBER? :Location Tower

[OUTPUT "Tower]
IF MEMBER? :Location Drawbridge

[OUTPUT "Bridge]
IF MEMBER? :Location Courtyard

[OUTPUT "Yard]
IF MEMBER? :Location Ramparts

[OUTPUT "Ramparts]
IF MEMBER? :Location

[OUTPUT "Moat]
OUTPUT "Nowhere
END

Moat

The Where? procedure is the heart of the hypermedia
component of the program. In this example, using Zoom
procedure given below will cause the turtle to go to another
page in Logo Writer which shows an expanded view of the
room or location. To try this concept, first create another
Logo Writer page with an expanded drawing of one of the
castle structures. For example, the second Logo Writer page
might show what is in the towerof the castle. I tis possible that
the tower might contain a rug and a fireplace, with a bell on one
side of the fireplace and a magnifying glass on the other.

f\ R'""'D u ······<5 ~

Tower 1\pom

The following procedure will take us from the castle to
the tower room. This presumes, of course, that you have
created a page in LogoWriter named "Tower", and that the
turtle is in the tower area on the castle page.

TO zoom
IF NOT MEMBER? Where? PAGELIST [SHOW

SENTENCE [There is no expanded
drawing of] Where? STOP]

GETPAGE Where?
END

You will need a procedure to return to the castle from the
tower room. The following program on the procedure side of
the towerroom page will ensure that you can return by typing
"Castle". You will need an identical Castle procedure in each
of the other Logo Writer pages (Yard, Bridge, Moat, etc.) that
you create.

TO castle
GETPAGE "Castle
END

The use of the Where? procedure is not limited to the
expanded drawings of each of the Castle areas. The Zoom
procedure is given as a model that can be used as the basis for
similar procedures. For example, in addition to the expanded
drawings that show additional details of what is inside each
area, we also created other Logo Writer pages that show the
view that can be seen from those areas.

For instance, the tower view below shows what can be
seen looking out from a window in the Tower. There is a small
cottage, mountains, and a cave in the distance. Since the name
"Tower"wasalreadyusedforaLogoWriterpage, we used the
name "TowerV" (the "V" stands for "View") for the Logo­
Writer page showing the view from the tower window.

The View procedure that shifts to a view from the area
where the turtle is placed is very similar to the Zoom proce­
dure. The only difference is that a "V" (for "View") is added

Page 24 -----LOGO EXCHANGE -----1~ November 1989

Logo & Company--continued

to the end of the page name. This concept can be used as a
model for hypermedia procedures such as an X-Ray proce­
dure that looks for hidden objects, and many similar variants
of this idea.

TO View
IF NOT MEMBER? Where? PAGELIST [SHOW

SENTENCE [There is no view from
the] Where? STOP]

GETPAGE WORD Where? "V
END

The images created can be drawn with Logo, or devel­
oped with external paint programs and brought into Logo­
Writer with the Load pic command. An increasing library of
ready made clip art is also becoming available for this type of
application.

This type of Logo Writer hypermedia application can be
utilized in a variety of ways. Instead of a castle, the floor plan
of a building or an enchanted garden could be used. In science
class the solar system could be depicted, with individual pages
for each of the planets. This approach could also be used to
depict scenes from a story in language arts class.

Hypermedia refers to the ability to go directly from one
point to another location in a medium. Multimedia refers to
use of more than one medium (such as computers and video)
at the same time. The hypermedia example described above
can be developed with no more than a standard Apple II or
IBM computer. We have also used this type of application in
conjunction with a videodisc player. In this type of multime­
dia application, the View command controls a videodisc
player. When the View command is used, an image from the
videodisc player is displayed on a separate video monitor
beside the computer monitor. In this instance, the view from
the tower of the castle shows a flowing mountain stream
rather than a computer illustration. The hypermedia examples
described above can be useful tools in themselves, and also
provide a good starting point for work with multimedia
applications.

A Note about Versions and Dialects
If you are using Version 1 of LogoWriter, you should

consider upgrading to Version 2. Version 2 has many power­
ful commands which are not available in Version 1. However,
if you are currently using Version 1, you can still develop the
hypermedia examples. Substitute FIRST in place of the INT
function in the procedure BLOCK?. You will also need to
create the following procedures for XCOR and YCOR.

TO XCor
OUTPUT FIRST POS
END

TO YCor
OUTPUT LAST POS
END

The concept of pages in Logo Writer is a good parallel to

the concept of cards in Hypercard. Therefore LogoWriter
provides a good basis for discussion of the examples listed
above. However, you can also develop similar applications in
other versions of Logo, allowing for slight dialectical differ­
ences. For example, the function MEMBER? is written as
MEMBERP in some dialects of Logo such as LCSI Logo II.
Check your Logo manual to determine the form used in your
dialect of Logo.

Glen and Gina Bull
Curry School of Education

Ruffner Hall
University of Virginia

Charlottesville, VA 22903
Glen's BitNet address is GLB2B@Virginia
Gina's BitNet address is RLBOP@Virginia.

r

November 1989 ------LOGO EXCHANGE----~~ Page 25

I received the following comments from Brian Harvey
regarding two articles in the September 1989 issue of LX. His
comments address specific programming issues in each of the
articles. -Editor

Although the code in this article was intended to be used
to "match" the physical model of the Russian dolls, I think that
the version that uses

MAKE "WORD BUTLAST :WORD
PRINT. WORD :WORD

instead of saying

PRINT.WORD BUTLAST :WORD

encourages the all-too-common confusion between the name
of an input (established in the title line of a procedure defini­
tion) and the value of the input (established in an instruction
that invokes the procedure). The article makes it look as if the
expression that provides the argument value has to be the same
(:WORD) as the name in the title line. Also, the MAKE
encourages the learner to think about changing the value of the
existing WORD variable, whereas we really want to focus
attention on the fact that there are several variables with the
same name. Even using the version without the MAKE, it's
common for students to misunderstand by thinking that the
recursive call "assigns a new value to the variable." The
MAKE makes that misunderstanding more likely. (My ver­
sion produces different results from the one in the article.
Mine is symmetrical, with DREAMS as the last line, equal to

the first line printed. I think this is better, too, because it makes
the point that on return from the subprocedure, the caller's
variables are unchanged.)

In addition "the MAKE statement had changed the value
of the global variable :WORD" is wrong. It's notaglobalvari­
able; if it were, the procedure wouldn't work at all.

The Crume and Maddux article on page 26 should make
it clear that their versions of TEST etc. are not quite like the
primitives in other LCSI Logos, for two reasons. First, the real
TEST primitive does not take an expression list as input, but
rather takes the word TRUE or FALSE. That is, instead of

TEST [:A = 5]

as in the article, in a regular LCSI Logo and in Terrapin Logo
you say

TEST :A 5

They could make their tool work like the real primitive by
removing the RUN from the definition of TEST on page 27.
(The RUNs in the definitions of IFTRUE and IFFALSE
should not be removed.) Second, in the real primitive version
of TEST, the result of the testis local to the procedure in which
TEST was invoked. In their version, the test result is global.
That is, suppose you have a procedure

TO FOO
TEST such-and-such
IFTRUE [BAZ]
IFFALSE [GARPLY]
END

Now suppose that FOO is invoked and the test condition
is true. Suppose further that BAZ (which is invoked by the
IFTRUE) does its own TEST and IFTRUE/IFF ALSE instruc­
tions. Then, on return to FOO, the IFF ALSE instruction will
have the wrong effect (invoking GARPLY) if BAZ's test
came out false. This can't be fixed without making TEST a
real primitive.

Brian Harvey can be reached at
bh%anarres.Berkeley .EDU@ berkeley .edu

Page26 -----LOGO EXCHANGE-------1~ November 1989

Two Turtles in a Hot Tub: Part
Three
Parallels between Logo primitives
and mathematical definitions.

Through a series of email messages initially between
Tom Kieren and myself, but later joined by David Pimm, I
suggested to Tom and David that they should sit down one day
and tape record their conversation about the relationship
between mathematics and Logo. This they did one evening
whilst reclining in Tom's hot tub in Edmonton. They mailed
the tape to me, and I had it transcribed. I did some editing on
it, and then emailed the result to David in Britain and Tom in
Edmonton. Within hours David returned a corrected copy to
me by email. Tom· s revisions carne a few days later. Because
of the limitations of space for any one column in LX, we have
divided the conversation between David and Tom into three
sections, the first of which appeared in the September 1989
Issue of LX and the second of which appeared in October LX
and the third of which appears below.

(DP) For a new starting point, let's work on the parallel
between primitives in Logo and definitions in mathematics.

(TK) Yes, you were arguing that, or pointing out the
problem of packing a lot of mathematical information into a
primitive. In mathematics as well there seems to be a trend
toward packing a lot of power into the definitions such that the
consequences flowing from the definition become trivial. We
would like to look at the opposite side of that same coin and
try to think about powerful primitives: what are their positive
consequences and what happens when you try to unpack
them?

For example, one of thefirst primitives I had kids playing
around with was something we found in Byte magazine. It was
called "Squiral." It made interesting spiral shapes. Readers
are probably familiar with it. The turtle simply went forward
a bit and turned an angle, went forward a bit further and turned
the same angle, went forward a bit further, and etc. Although
this seemed like a fairly harmless activity, the primitive
carried with it ~ parameters which kids could play with.
Because it had a lot of power, the kids carne to see that there
was much, much more to shape then they might of thought of
previously-shape in a controlled sense, not shape in some
random, non-replicable drawing sense. I think that is one of
the nice things of having super powerful primitives. The kids
really like the fact they could get star shapes and spirals and
shapes that seemed to be partly three-sided and partly four­
sided, depending on how you looked at them: all kinds of
jmeresting nuances you probably would not get by drawing

things])y hand. So again, the primitive provided some
interesting mathematical power to the students.

(DP) One of the additional factors is that all these
different shapes came from the same primitive, thereby sug­
gesting that the shapes actually have something in common
whereas you may otherwise have classified them as totally
different, coming across them at just the visual level. The fact
the shapes are all generated by the same primitive can suggest
that you look for the commonalities across a wide range of
different phenomena.

(TK) Again, we have the "order thing," don't we? If we
think of the primitive as a definition, the definition comes first,
and the consequences of the definition come afterwards. This
is opposed to our normal play in mathematics which is to do
a bunch of things and then see if we can write a definition for
it. If you're given one of these powerful primitives, the
definition comes first. That's an interesting sequential thing,
and it may have some positive consequences.

Again, if you think of the primitive as a definition one can
start to do things with a primitive; you can go to edit mode and
look and see what the primitive is saying ...

(DP) ... which is a nice reversal and suggests the possibil­
ity of perhaps not seeing primitives as definitions, but seeing
definitions as primitives. Nonetheless, you can look at a
definition and try to reconstruct to see how the various
elements of it actually carne about.

(TK) I think that is a nice point, but let me just explore the
distinctions between a definition as it is normally written, let
us say, in a mathematical textbook, and a primitive as it might
be written in Logo. Let me take the instance of the 11 and 12
year olds I worked with on Squiral as a way of exploring this.
The interesting thing seems to me was that some of the
students, not all, were interested in looking to see how the
"primitive" worked. They were very bothered by the fact that
the turtle always ended up the Squiral out some place on the
screen in a non-predictable location. They were wishing to
use some of these objects in their drawings, and could never
figure out where the turtle was going to be. So their first
attempt at it was to try to get the turtle to end up in the center
instead of the turtle ending up on the edge. They seemed to
think, "Perhaps we can find out how the darn thing works." In
that sense, I think, they were looking at the primitive as a
definition.

The interesting alternative effect was that they then
changed some of the lines in this "definition." Unlike an
ordinary definition they could now see what happened. They
could, in fact, have the computer execute the definition, if you

November 1989 -----LOGO EXCHANGE----~ Page 27

will, and see the consequences. This is probably not very
different from what a mathematician might do, but probably
very different from what a child might do. So maybe Papert
is on to something: there is mathematics buried in Logo, in the
Logo activity, regardless of whatever the objects you arc
looking at and working with are mathematical or not.

(DP) I'm also remembering an earlier article in Logo
Exchange written by Uri Leron called "On the Mathematical
Nature of Turtle Programing" (Leron, 1987). There he draws
some similarities between the mathematical definitions of a
rectangle and the Logo prescription of a rectangle, and talks
about one of the differences in terms of it being an active -
describing what you have to do in order to generate one -
rather then a passive definition, which a lot of mathematical
definitions tend to be. And that remains me of a "history of
math discussion": that a lot of early definitions, particularly
in geometry, have been described as definitions by genesis;
which is, you say what you need to do in order to be able to
generate the curve. Some of the definitions, for example, as
I think of a circle in Euclid, are by genesis. This style of
defining mathematical objects is very useful for doing- for
having a strong sense of the object- but is less useful if you
actually want to prove the results. The alternative conception
which seem to come about, particularly with Appolonius'
work on conics, has been called definitions by "property,"
where you try to come up with some characteristic property,
particularly in the context of curves, and you specify the
mathematical curve by the facti t satisfies this property. In fact
one ofthe earliest examples, in seventeenth century, of differ­
ential equations are set up precisely not as a curve that has this
property, but as a curve whose tangents have this particular
property, which is one stage further removed. So it seems to
me that the primitive, to the extent that Logo is associated with
action, will be emphasizing a definition by genesis approach
to mathematical objects. At the same time, I can see how a
mathematician working in Logo will be able to implement the
properties that they know - rectangles or whatever mathe­
matical shapes satisfy - in order to provide a more active
definition of it.

(TK) There are two things in your comment that strike
me. One is the general notion that mathematics in its primitive
state is a sort of engineering report, a "how to do it" report
rather than anything else. I think in that case, Logo provides
a fairly ready language for making quite nice mathematical
engineering reports. We were talking yesterday about growth
or movement between levels, and it seems to me that there is
a kind of parallel in the growth and use of Logo in the
movement from procedures to families of procedures, and
then to recognizing that procedures themselves are useful
objects of study. Then we go to something that might be called

the structured procedure, or top down procedure, which is
much closer to definition by property as opposed to definition
by action. If you were to look at some more advanced Logo
procedures, they are no longer in any way tied to action. You
can't see the particular action by looking at a particular line,
or even a particular sub-procedure in the Logo procedure. So
I think that there is a parallel again between the move towards
this definition by property away from definition by prescrip­
tion. I think that's an interesting thing.

Minsky talks about using language as a controlling factor
(Minsky, 1985). As one moves from these procedures, which
define action by a very controlled, orientated use oflanguage,
to definition by structure, it is less obvious what the control is.
The control is certainly not directly of the turtle; it's clearly
control of your thoughts, as opposed to the control of the turtle.

(DP) Right, the turtle then loses the focus of your
attention as being the thing that you're controlling. That's
always been something I have difficulty sorting out in my own
mind when I come to work with Logo; namely, to what extent
am I automating mathematical concepts and understanding
that I have had in an dynamic active way, as opposed to using
Logo to explore mathematical ideas that I haven't actually
either had or gained control of, so that in someways I am
building something new.

Hence, it seems to me that there are these two different
ways you can use Logo in connection with mathematics. As
young children work through Logo they're are obviously
learning mathematics outside the Logo context as well, and
I'm quite interested in the interrelation between these two, sort
of parallel, developments that make links at certain points.

(TK) I think that that is a very interesting kind of point
and again I think it reflects on our previous discussion about
powerful primitives. One of the virtues of powerful primitives
is that it puts you into a mathematical environment; then you
can start to explore areas that you wouldn't have even antici­
pated existed. The Squiral thing was a very, very good
example of that. Two of the 11 and 12 year olds that I was
working with came to look at Squirals where the angle was
around 180, because they had made these beautiful wing
shaped objects, and then they were trying to make wing
shaped objects with two wings, and they found that if they
went just over 180, and just under 180, they got the things that
they wanted. But they also came up with the theorem that if
you have 180plussomeamount,and 180minussomeamount,
you get the same figure, except the opposite, so that the
primitive and the use of number gave them a kind of a different
handle on shape and I think gave them, pushed them if you
will, to start looking at the properties rather than the result of

r

i '

Page28 ------LOGO EXCHANGE-----~ November 1989

Math Worlds--continued

the properties. Clearly, the result of the properties is what
peaked their interest; that is, they got these beautiful wing
shapes that they were looking for. But then they were really
struck by "does this work even if we aren't making wings,"
and I think that that's an interesting kind of thing with
powerful primitives; it does lead you into mathematics.

(DP) That's right, and I think that's a nice example of
trying to distinguish between mathematical thought and, if
you like, any other kind of thought, including programming
thought or computing thought. In mathematics, if you're 1

attending to the processes directly, as opposed to the objects
you're focusing on, I think that's one of the characteristics of
explicitly mathematical thought. So for me they might be
using what Vergnaud is calling, "theorems in action" when
they are concentrating on implementing what they want to do
on the screen (Vergnaud, 1981). But the move that you
describe so well when the pulling away from the particular
implementation, as saying "is this more generally true, is the
complimentary of over 180 matched by a under 180," then I
think they're moving much more directly into straight mathe­
matical exploration and away from the screen. Another thing
that struck me in what you were saying was how rare it is in
a mathematics class for pupils to know what they want. You
gave a very clear description of how they wanted to do
something on the screen, then went about pulling particular
tools and knowledge towards achieving that end. In a tradi­
tional mathematics class if you ask pupils what do they want,
or make a developmental, what's the phase. There's a notion
of developmental reading where you come into the classroom
and one of the things you immediately ask the pupils is, "what
do you want to get better at." And if children got the notion
of developmental mathematics, I suspect if you went into a
class and ask, "what to do you want to get better at," you
wouldn't get particularly strong or coherent answers. It seems
to be one of the strengths of Logo, related to this implementa­
bility of action, is that pupils can either generate for them­
selves, or see on other pupils screens, or be promoted by a
teacher offering something, to want something; and therefore
provide some goal to which they are willing to work drawing
whatever resources they can.

(TK) I suspect that this is the more general point made by
Noss and Hoyle when they talk about their UDGS model at
least the "use- discrimination-generalizing sequence," seems
to be three levels of "what do you want." One is, what do you
want now; the second is, can I make this different, doing pretty
much what I'm doing now; third, is this really part of a much
larger pattern that one might do in general. You have both the
language and the consequence of the language rather closely
tied, at least at one level of Logo use.

References
Ainley, J. & Goldstein, R. (1988). Making Logo Work. Ox­

ford: Basil Blackwell.
Balacheff, N. (1988). Aspects of proof processes in pupils'

practice of school mathematics. In D. Pimm (ed.) Mathe­
matics, teachers and children. London: Hodden &
Stoughton.

Hillel, J. (1987). Multiple perspectives and task-analyses of a
Logo activity. In J. Hillel (ed.) Proceedings of the Third
International Conference for Logo and Mathematics
Education. Montreal: Concordia University.

Kieran, C., Hillel, J. & Erlwanger, S. (1986). Perceptual and
analytical schemas in solving structured turtle-geometry
tasks. In C. Hoyles & R. Noss (eds.) Proceedings of the
Second International Conference for Logo and Mathe­
matics Education. London: University of London School
of Education.

Kieran, C., Hillel, J. & Gurtner, J. L. (1987). Qualitative
strategies in Logo centering tasks. In J. Hillel (ed.)Pro­
ceedings of the Third International Conference for Logo
and Mathematics Education. Montreal: Concordia Uni­
versity.

Leron, U. (1987). On the mathematical nature of turtle
programming. Logo Exchange, 5 (9).

Ludwig, S. (1986). A Logo/motion geometry cu"iculum en­
vironment. Masters Thesis. Edmonton: University of
Alberta.

Minsky,M. (1985). The society of mind. New York: Simon &
Schuster.

Pimm, D. (1987). Speaking mathematically. London: Rout­
ledge and Kegan Paul.

Spivak, M. (1965). Calculus on manifolds. London: Ben­
jamin.

Stubbs, M. (1974)."0rganizing classroom talk. Occasional
Paper !9, Centre for Research in Educational Sciences,
University of Edinburgh.

Vergnaud, G. (1981). Quelques orientations theoriques et
methodologiques des recherches francaises en didac­
tique de mathematique. Proceedings of PME V.
Glenoble.

About the discussants
David Pimm is a lecturer in Mathematics Education at the

Open University in Britain. Tom Kieren is professor of
Mathematics Education, and Distinguished Research Profes­
sor, at the University of Alberta, Canada.

A. J. (Sandy) Dawson is a member of the Faculty of
Education at Simon Fraser University in Vancouver,

Canada. He can be reached electronically through Bitnet as
userDaws@SFU.BITNET

r
I

·--~

t

November 1989 -----LoGo ExcHANGE ----o~~D-.-· Page29

To err is human ...
by Douglas H. Clements

How pervasive are errors in Logo learning? How persis­
tent? Heller (in Fay & Mayer, 1988) found that fourth-grade
students were 48% correct on a Logo syntax test after 3 weeks
of Logo experience. Mter 12 weeks, performance rose only
to 65% correct. How about older students? In one study,
students from sixth to eleventh grade also showed errors on
essentially every Logo construct. Over 70% had major
difficulties. No student had no difficulties (Kuspa & Sleeman,
1985).

Even when students gain control over the turtle's world
(see last month's column), they may face substantial difficul­
ties. What are these difficulties? Why do they occur? The
next several columns will explore these critical questions. As
you read, try to imagine students of yours who show similar
misconceptions.

General Types of Errors
Students make several types of errors. For example:

1. Typing errors
2. Syntactic errors: Incorrect Logo statements that would

lead to an enor message.
3. Semantic errors: Logo statements that lead to inaccwate

or contradictory actions, although each of these state-­
ments is syntactically conect.

4. Stylistic errors: Logo code that does not follow standard
programming conventions, making the program ineffi­
cient or difficult to comprehend and debug.

In this column, we will emphasize syntactic and semantic
errors that go beyond the basic (semantic) turtle graphics
errors that were discussed in last month's column. Stylistic
errors will be discussed in a future column.

Creating and Using Procedures
Why do so many students resist using procedures, espe­

cially as subprocedures? Often, young children do not under­
stand the relationship between the instructions they give the
turtle and the graphics it creates. Rather, they seem to believe
that the turtle remembers a visual image of the graphic picture
and calls up that image (Vaidya & Mckeeby, 1984-1985).
Even older students identify programming with turtle graph­
ics as "drawing with the turtle." Of course, this is also a
strength-children can use their well-established intuitions
about drawing to ease their introduction to Logo. The disad­
vantage, however, is that this hampers procedural analysis of
tasks. Writing a program is seen as "tracing over all the lines"
rather than putting together"building blocks" (some of which

may not yet be defmed) (Hillel, 1985). This may lead to the
common approach of constructing "stacked rectangles" as
described by a fourth grader: "I drew the outside and then
fllled in the lines." (The previous column "Planning for
Planning" contains teaching ideas pertinent to this problem.)

Even when the power of subprocedures is illustrated,
students often believe that-as one explained-"It' s easier to
do it the bard way." This often occurs because students relate
a turtle geometry procedure with a specific output (inCluding
its initial position and orientation). They view it as a fixed
product rather than a dynamic and flexible process. For
example, one boy constructed a rectangle procedure (begin­
ning at a corner), then decided he wanted it to be centered on
the screen. He believed that he would need to redefme the
procedure rather than merely change the initial turtle state

(Hillel & SamUJ\:3y. 1985). So students need to be guided to
look closely at turtle state changes and at interfaces.

Students also have problems using and interpreting pro­
cedures (43% in Kuspa & Sleeman, 1985). These srudents
were given the following procedures and procedure call and
were asked to execute them by hand.

TO BOX
RT 90 FD 10 RT 90 FD 10 RT 90 FD 10
END

TO SIDES
FD 10 RT 90 FD 30
END

TO SHAPE
SIDES
BOX
SIDES
END

SHAPE

Page 30 -----LOGO EXCHANGE----~~ November 1989

Lngn: Search & Rcscarrh--cnntinued

Several students did not know when to execute the
procedures. Some executed them as they were encountered
(within the procedure's own definition; e.g., BOX SIDES
SHAPE). Others executed them as they were encountered and
then again when they were called (leading to: BOX SIDES
SHAPE SIDES BOX SIDES SHAPE).

Showing another class of errors, some students misun­
derstood the role of the name of the procedures. For example,
some executed only "meaningful" figures. These students
would not execute SIDES or SHAPE because neither "sides"
nor "shape" specifies a complete, specific figure. Others
ignored procedures whose name did not match its actions.
BOX did not execute because it did not literally draw a box.
Finally, the name of procedure often dictated what it would
draw. For example, another procedure CIRCLE which called
BOX was interpreted as drawing a circle.

MAKE and Variables
Problems with assignment statements (e.g., MAKE)

occurred in up to 71% of students (Kuspa & Sleeman, 1985).
Many were confused by statements such as MAKE "A :B.
Some would ignore the statement (A's value was left un­
changed). Others transferred the literal character ("B") in­
stead ofB's value. Some thought that MAKE "A 3 would
print A three times.

Programming experience in another language may hurt
more than it helps. Students who previously learned BASIC
prefer the MAKE command to other devices such as parame­
ter passing, often leading to inefficient procedures (Lee &
Lehrer, 1988).

In a previous column, we saw that students frequently
misapply analogies. For example, students are often taught to
think of variables as a box. However, many students then
believe that, like boxes, variables can hold more than one
value (du Boulay, 1986). Similarly, Logo encourages mean­
ing names for variables. However, using meaningful names
sometimes leads students to believe the names are meaningful
to the computer. So, in naming both procedures and variables,
it may be wise to begin with meaningful names, use nonsense
names as an exercise, and finally return to meaningful or
abstract naming schemes.

REPEAT Statement
REPEAT statements are another source of difficulties for

many (57% of students in Kuspa & Sleeman, 1985). Errors
include:

1. Ignoring a tum command when it is the last command in
the REPEAT statement.

2. Adding an extra tum command (e.g., RT 90) to the end of
a REPEAT statement to make it draw something "mean­
ingful" (e.g., a square).

3. Believing that commands adjacent to the bracket should
be executed during the first pass of REPEAT but not at
any subsequent pass. Given REPEAT 2 [A 1 A2] A3, they
would execute the commands as AI A2 A3 AI A2.

4. Similar, but executing the adjacent command with each
pass, yielding: A1 A2 A3 A1 A2 A3.

5. Executing commands sequentially, forward then back­
ward.

6. Allowing the name of a procedure which the REPEAT
statement referenced to interfere with the execution of the
command. Given

TO TRIANGLE
FD 2 RT 90 FD 3
END

and the procedure call

REPEAT 2 [TRIANGLE]

the students drew a mangle.

IFffHEN Statements and Logical Operators
The IF statement also causes problems (in 2I% of stu­

dents in Kuspa & Sleeman, 1985). Examples:

I. When the IF predicate was true, executing both lists
(LCSI syntax); when false, executing neither.

2. Ignoring the second list.
3. Not knowing what to do if the predicate was false.
4. Omitting ELSE. Because they could omit ELSE if it were

not needed, many adults learning Terrapin Logo tended
to omit it even when it would be helpful (Lee & Lehrer,
1988). Such fmdings may support the use of IF and
IFELSE as separate statements in recent versions of
Logo, or the insistence on using both lists (LCSI syntax)
in older versions whether or not they are absolutely
needed.

5. Having problems with logical operators, from avoiding
their use (Lee & Lehrer, 1988) to making misguided
analogies to natural language use; for example, "and" and
"then" often mean "what next" in English (du Boulay,
1986).

Does Changing Instruction Help?
Struggling with many of these ideas is probably unavoid­

able and may even be beneficial. Nevertheless, might not
instruction make this struggles less frustrating and more
profitable? Yes. For instance, students in one study couldn't
transfer from infix notation used in turtle graphics (e.g., :side
+ 5) to the prefix notation list processing (e.g., BUfFIRST

November 1989 -----LOGO EXCHANGE---~~ Page 31

:LISTI). When they used prefix notation for everything from
the beginning (e.g., sum :side 5), this problem disappeared
(Lee & Lehrer, 1988). Similarly, the use of TEST, IFIRUE,
and IFF ALSE, rather than the traditional IF, reduced working
memory demands and led to increased performance.

It is also important to provide students with the right level
of detail about what's going on inside the machine. The
detailed level of logic gates is not helpful (du Boulay, 1986).
What may be useful is a less sophisticated explanation of
Logo's internal operations, such as is given by "match box"
computers.

Finally, it may help us as teachers to recognize that even
"simple" Logo problems are not at all simple. Programming
statements and their combination lead to a need for precision
and a grasp of complexity not often demanded in other
intellectual tasks. We need to develop sound mental models
of the content (e.g., turtle graphics) and the control structures
(e.g., REPEAT or IF) of Logo programming right from the
beginning. We also need to understand what underlies stu­
dents' errors, a topic to which we shall return next month.

References
du Boulay, B. (1986). Part II: Logo confessions. In R. Lawler,

B. d. Boulay, M. Hughes, & H. Macleod (Ed.), Cognition
and computers: Studies in learning (pp. 81-178). Chich­
ester, England: Ellis Horwood Limited.

Fay, A. L., & Mayer, R. E. (1988). Learning LOGO: A
cognitive analysis. In R. Mayer (Ed.), Teaching and
learning computer programming: Multiple research
perspectives (pp. 55-74). Hillsdale, NJ: Erlbaum.

Hillel, J. (1985). On Logo squares, triangles, and house. For
the Learning of Mathematics, 5, 38-45.

Hillel,J., & Sam~ay,R. (1985).AnalysisofaLogo environ­
ment for learning the concept of procedures with vari­
able. Unpublished manuscript, Concordia University,
Montreal.

Kuspa, L., & Sleeman, D. (1985). Novice Logo errors.
Unpublished manuscript, Stanford University, Stanford,
CA.

Lee, 0., & Lehrer, R. (1988). Conjectures concerning the
origins of misconceptions in Logo. Journal of Educa­
tional Computing Research, 4, 87-105.

V aidya, S., & Mckee by, J. (1984-1985). Conceptual problems
encountered by children while learning Logo. Journal of
Educational technology Systems, 13, 33-39.

Douglas H. Clements, State University of New York at
Buffalo, Department of Learning and Instruction

593 Baldy Hall, Buffalo, New York 14260
CIS: 76136,2027 BitNet INSDHC@UBVMSA

NECC '90
June 25-27, 1990

Opryland Hotel
Nashville, Tennessee

NECC Promotes Interactions Between

• Practitioners and Researchers
• Computer Educators from kindergarten

through graduate school
• Educators and Vendors
• Professionals from every discipline

Papers, projects, and workshop proposals are
due by Oct. 15, 1989

National Educational Computing Conference

For more information or a copy
of the Call for Participation,
contact:

ISTE/NECC '90
University of Oregon
1787 Agate Street
Eugene, OR 97403
(503) 686-4414

For information about
exhibits, contact:

Paul Katz
Continuation Center
1553 Moss Street
Eugene, OR 97403
(503)686-3537

Page 32 -----LoGO EXCHANGE---~~ November 1989

by Ken Johnson

I spent Tuesday to Friday, 29 August to 1 September, at
the European Logo Conference at the State University, Gent,
Brussels.

This conference was bigger than the last conference
(1987, in Dublin) with 110 delegates, and very well fmanced
since one of the main Belgian banks (ASLK) had agreed to
sponsor it There were delegates from all over Europe: not just
the EEC, but also from Bulgaria and Hungary. There had been
enquiries from the Soviet Union but apparently no potential
delegates from the USSR had been able to obtain an exit visa.
There was also a small .knot of American visitors from LCSI
and from Lego Inc, and a group of Canadians.

There were a number of theoretical presentations from
the EEC countries other than Britain, with the British-led
sessions having a more practical bias. This, I think, is due to
the sudden need for training in the Logo language which arises
out of the National Curriculum in mathematics and in design
technology. (Unfortunately, the schools do not have the
resources to pay for the training they need.)

A couple of new software products were on show. LCSI
has pushed the boat out on Logo Writer and held a number of
sessions demonstrating (American) English, French, and
Flemish versions; the Dutch Logo Centre in Nijmegen
brought an improved version of LCN Logo which has a

structure editor and an unusual implementation of procedures.
There was also a Dutch product (in English) called Lo gonaut,
but I never found anyone free to demonstrate it I have been
promised a review copy though. So there are still people
around developing Logo software despite the scarcity of funds
in education everywhere.

I didn't see any new hardware at all. No new computers
nor floor turtles!

Other things: The Bulgarians have adopted Logo for their
own National Curriculum wholesale and weredisplaying and
discussing their set of school mathematics textbooks. Unfor­
tunately these are in Bulgarian and of value only to real enthu­
siasts! Richard Noss and Celia Hoyles gave an account of
recent work at the University of London Institute of Educa­
tion.

Edinburgh's 'Nimbus Logo' has clearly attracted quite a
bit of attention since the Dublin conference when nobody had
heard of it, and I spent quite a bit of time trying to sort out
misconceptions and programming problems ofNimbus users.

Gent is an excellent conference site, though it must be a
fairly expensive place to live in. The next European Logo
Conference will probably be in Parma, Italy (near Venice) in
1991.

Ken can be reached through BITNET at
KEN@AIAI.ED.AC.UK

Make your desktop publishing software earn its keep.

By now you have discovered that there is more to desktop
publishing than mastering the keystrokes and commands of the

software. Exploring Graphic Design teaches you how to plan
and produce letterhead, posters,
newsletters, manuals and books.

Exploring Graphic Design is a concise
and thorough overview of essential design principles

and their application to practical problems. It complements
any desktop publishing program. Perfect for secondary

school or university classes, or as a helpful
reference for adults.

Get your money's worth from your desktop publishing
software by Exploring Graphic Design .
$9.95

ISTE, 1787 Agate St. , Eugene, OR 97403;
ph. 5031686-4414. •

Telecommunications: Make the connection.
Whether you want to hook up with a teacher in

Kenya, or a teacher across town, ISTE's Telecomroo­
nications in the Classroom will help you make the
connection.

Authors Chris Clark, Barbara Kurshan, Sharon
Yoder, and teachers around the wor1d have done your
homework in Telecomroonications in the Classroom.
The book details what telecommunications is, how to
apply it in your classroom, what hardware and
software you'll need, and what services are available.
Telecommunications in the Classroom also includes a
glossary of telecommunications terms and exer11>lary
lesson plans from K-12 teachers.

Telecommunications in the Classroom is an
affordable, informative resource for workshops,
classes, and personal use. $10.

Make your connection today wHh ISTE's­
Tslecommunlcatlons In the CIBssroom

ISTE, University of Oregon, 1787 Agate St. ,
Eugene, OR 97403-9905; ph. 503/686-4414.

How to
• Increase your
Logo Power

Whether you're a Logo teacher, trainer, or enthu­
siast, you know that this powerful computer lan­
guage has the potential to have a significant impact
on how teachers teach and how students learn.
ISTE's Special Interest Group for Logo Educators
(SIGLogo) offers you a forum for the exchange of
ideas, concepts, and techniques.

What is SIGLogo? SIGLogo is a professional
organization that helps Logo Educators get ahead.
We sponsor workshops, providing a support com­
munity for Logo-using educators. Novice or expert,
you will find helpful information in each issue of
our journal, Logo Exchange.

Satisfaction Guaranteed. Whether you teach
Logo or use Logo to teach, SIGLogo and Logo Ex­
change bring you a wealth of ideas from top Logo
educators throughout the world, providing you with
current information on Logo research, resources ,

and methods. We're your personal window on
professional Logo activities.

Join SIGLogo Today! As a member of
SIGLogo, you will receive the Logo Exchange
journal nine times per year. SIGLogo members
are invited to participate in local, regional, and
national meetings and to contribute to the flow
of ideas through Logo Exchange. Logo Exchange
is published monthly except for June, July, and
August. SIGLogo membership is $25 for ISTE
members, $30 for non-members. Add an addi­
tional $5 for non-U.S. SIGLogo membership.

The International Society for Technology in
Education (ISTE) is the leading U.S. and inter­
national professional organization for computer
educators. It is non-profit, supported by more
than 60 organizations of computer using educa­
tors worldwide.

ISTE/SIGLogo, University of Oregon
1787 Agate Street, Eugene, OR 97403-9905

503/686-4414

