
Journal of the ISTE Special Interest Group for Logo-Using Educators

! LOGO
it t! EXCHANGE

March 1990 Volume 8 Number 7

BORP!!

/

International Society for Technology in Education

Volume 8 Number 7 Journal of the IS1E Special Interest Group for Logo-Using Educators March 1990

Founding Editor
Tom Lough

Editor-In-Chief
Sharon Yoder

International Editor
Dennis Harper

International F1elcl Editors
Jeff Richardson
MarieTada
Harry Pinxteren
Fatimata Seye Sylla
Jose Annando Valente
Hillel Weintraub

Contributing Editors
Eadie AdunSQil
Gina Bull
Glen Bull
Doug Clements
Smdy Dawson
Dorothy Filch
Judi Harris

SIGLogo Board of Directors
Gary Slager, President
Lora Friedmm, Vice-President
Beverly and Lee Cunningham, Communications
Fl'llllk Matthews, Treasurer

Publisher
International Society for Technology in Education
Dave Mounund, Executive Officer
Anita Best, Managing Editor
Mark Homey, SIG Coordinator
Lynda Ferguson, Advertising Coordinator
Ian Byington, Production

Advertising space in each issue of Logo Exchange is limited.
Please contact the Advertising Mgr. for availability md details.

Logo Exchange is the journal of the International Society for
Technology in Education Special Interest Group for Logo
using Educaton (SIGLogo), published monthly September
through May by ISTE, Univenity of Oregon, 1787 Agate
Street, Eugene, OR 97403-9905, USA; 503(346-4414.

POSTMASTER: Send address changes to Logo Exchange, U
of 0, 1787 Agate St., Eugene, OR 97403. Second-class
postage paid at Eugene OR. USPS 1#000-554.

Contents

From the Editor -Are You a ''Language Chauvinist?"
Sharon Yoder

Monthly Musings - Do It Again!
Tom Lough

Logo Ideas -"Driving the Turtle"
Eadie Adamson

Logo and Tangrams
Lani Telander

Beginner's Corner -Pencil & Paper or the Turtle?
Dorothy Fitch

Cooperatve Creations -Third Grade Dynamic Poetry
Jandy Bird

LogoLinX- Transgendered Neology
Judi Harris

A Random Toolkit for Logo Writer
Charles E. Crume

Math Worlds -Teacher-Created Educational
Software: Logo Tools
Henri Picciotto
Sandy Dawson, editor

Teachers Beginning to Think in Logo
Richard Austin

Logo & Company- Creating SETX and SETY in
HyperCard
Glen Bull, Gina Bull

Search and Research -Stages of Learning Programming
Douglas H. Clements

Global Logo Comments
Dennis Harper, editor

2

3

4

7

8

11

14

16

18

20

23

28

31

: .. ::.·:.::.:::::::::::::::;:::.::::.::-:=.::.~: ... · ... · -..... -...................... ·········· · .. -,· .·,· -··. ··.·.··.·.··.•.•.•,•,•,·,·,·.·,·.·.·.·.·.·,·.·,·,·,·.· .. ·· .. ·.·,•,••,•,• •'•'·'•·''.'.".' .. '•····· ····· ·········

ISTE. Merribe~llip .• r ••••...••.••.••.••.•••.••••••.••....•••••.••• ••·••· ···················>················· } } . ..••.•......•.•.•.•.......•........•...•...•...•. ~kn.n ... 1.~ ... ·.·.~···· .·• .. llm'·.··,·.···.···.·.~····HA.~. ·.•··.·.• .. ······.····.• ... •VIS· .. ·.·· .. ·.·.•·.··.·.•·• .. ·A·.····to·····.an·····.···.···lSd··.··.•·.u·l·······l···.•.~i·.··.·•.-.·· .•.. •.~•.•.·.A~.······.M.-·.··.·.·~········.·.•.·.··.$250··.--.·.•.•.·.·.······.··.········ fJ.··.or···A·············.······P ...•. A.·.··.~.·····.·······.••.s••.•·.··~·.···.~··.··.··.·.goo·.··.··.·. ir .•. fi·.•·.~.·········.·-·~-. ~t.·······shi¥ppm.~otg ••...•.•........•. • () &$. i ... i ~~~~; ;- "- _. • ..,..,..u~ <HI o ... __ .,. .•••

!•• ~IG~~eJ~~hG{ilt@I~·~JieLOgJkxcJ.tlllge) • < ·····.•·.··.·· .• •· ••• •.·• •• ••••· •. •.• ..• •.·.· .••. • ... ·.• ...• •·•·• ... ·•.· .. ·.·.············.11011Bi•·.·.· .. •··• .. ·.·.-.• ··.·~.~·.···{i.·.~~.·· ...•. · .•. ·L··········repm•······.papers:.••.···.• ...•..•..•... • .. • .. •·.··.· ... ··.········.···.····=·· .. •.ti.· .. ······.··.·····c···.OO···.···.• .. •·.·.·.·.····i············oa············.····P' • ... ·· .. · .. ···········.:.· .•. ·.·.• .. · ··•··· ...•. · ...•.•.•. -.. pro ...•.•• · .•.•. • ... ••·=··.·······.···.· •. • ..•. · ... ·.~ .. :.'·.··.· .. ·······ua······ .. ···"""···au·· ...•....•..••... · ...•....••..• "'•l••~ s ..•.....•..•. ·.;::········.or ... •_ ..•.....•... ···.··rn·····.······ .. ····pape .. ···· ·.·.;·.···-···gb•·· .• •·• .••.•....••. • •.•. • .. • ... ···.····ti:d··.·····rs·········-······················:;·····.·······~··.·······.· ... ~··········lST···.····.··············~········.··fin.········· .. ··~.··E• •···.················Unl····.····.t·····~···,···········d&······ ...•.••.... ".•.·.• ...•..•. ·•• .. •••.•. ~ .. ••.•.• , ••....• ~•••.... "·····.···········.""'"'··········.· ••. · • •.• ... · ... ·.•.· .. ·• .. ·····.······~WD············.·.•.· •.. • . .e,.·•.·.• ... ·.•.·.·.•.· .. ·.·.····tpe··· .. •·•····• ISW.· .•. · .•... •·•.... cifin· .. · ... · .•..•. ot .•. • •.•• ·.·.····Wd···.•····~··.·.····c•·-·····.· .•. t.··.·~··o ..•.. p ••. _ •••.•• T.e
5
•·· .. · ... · ... san .. ~ ... · ...•.. · · • .. ·.·.· ... ·~•.

1

s···········Y············.············ .• ·· .. •·•.···••···•·····

•. ISTE ~~t~ • ········>;¥-~······ i ~~f~S. ::.::~~ _ __. ... UJU _..__ ·~ uou- w UU>--· .. tw uu ·~~
Noo-ISTBMemmPrice•.· :Jo.oo··· · .•·•.••·.•.••••• .. •...• 35.oo··· •·· niflect~repes~~(lffic:iai~oflSTI!,•••••·•· ····•····•···•·•· >< >••·.···•·•••··•••<•···••···•·••·•• ·•·•) ••••.•••·••·• •·••·•

······.

Page2 -----L 0 G 0 EXCHANGE ----~ March 1990

Are You a "Language Chauvinist?"

This quarter I'm teaching a new course here at the
University of Oregon called "Programming Languages for
Educators." This course is designed to expose graduate
students in computer education to important computer science
concepts as well as to help them expand their knowledge of
programming in at least two different programming lan
guages. Because this is an education class, we will be
discussing the issues surrounding the teaching and learning of
computer programming while we ourselves are engaged in the
process of teaching and learning.

I have been preparing for this course by rereading Bruce
MacLennan's excellent book Principles of Programming
Languages (Holt, Rinehart, and Winston). This book again
struck me with the importance of viewing programming
languages in the context of their history. While this book is
indeed a computer science book aimed at teaching readers
how to develop a programming language, it can easily be
viewed at another level, providing the reader a deep under
standing of why each major programming language or genera
tion of programming languages has the characteristics that it
does. When I frrst read the book some years ago I found that
it put into perspective much of what I already knew about
programming in a way that made me much more tolerant of the
diversity of programming environments. As I reread it, I again
fmd myself sttuck by the importanceofunderstanding histori
cal context. even in a field as new as computer science.

In the Logo community it is quite common to hear
extremely disparaging remarks about other programming
languages, especially BASIC. Those of us in love with Logo
can't seem to imagine how anyone would want to program in
any other language. If you talk to those outside of the Logo
community who have different "favorite" programming lan
guages, you'll find that they too think that their programming
language is the only one to use, be it Pascal, C++, or Prolog.

Historically, however, each language or generation of
languages has had its role to play. FORTRAN brought us
away from assembly language programming and allowed us
to use fairly standard mathematical notation. Algol laid the
groundwork for most significant future programming lan
guages. Pascal brought us simplicity and a move towards the
needs of the applications programmer. Some of the early
languages have been extremely successful; others have
merely provided the foundation for future evolution. But each
has made its contribution. It should be particularly interesting
to LX readers that MacLennan's only mention of Logo is a
reference to its influence on Alan Kay's development of

Smalltalk. In this context, Logo is primarily viewed as having
a small place in computer science history!

But what does all of this computer science "stuff' have to
do with those of you using Logo in the classroom?

First and foremost, I think that it should remind us not to
be "language chauvinists"; not to think that "our" language is
the only language-oreven thatourversionofLogois the only
one. Even your LX editor uses a variety of programming
languages. I write programs in BASIC, Pascal, DBASE,
Logo, and Hypertalk. Each has its place; each has its reason.
Logo is not always the best tool for my needs.

More importantly, perhaps, let's be careful not to get
stuck insisting that Logo not grow and change. Among some
Logophiles there was a great deal of resistance to the Logo
Writer interface when it was frrst introduced. Somehow it
wasn't "real" Logo. I've heard quite a few people complain
about some of the new feawres in Logo Writer and Logo
PLUS. These detractors seem to think that Logo should
remain pure to its traditional form. A proliferation of such
attitudes will soon leave Logo as nothing more than a mention
in the history of computer education. Educators will move on
to more flexible and powerful tools that make use of the
capabilities of new hardware and the needs of a changing
population of computer using students.

And what of other software besides programming lan
guages? In this issue we again have an article by Glen and
Gina Bull on using HyperCard. Why? Because Glen and
Gina (and many others) see Logo as part of a larger class of
software that is "learner based"; software that puts the learner
rather than the computer in control. No doubt you have
noticed more articles along these lines in LX . These articles
can help remind us all that it is generally the Logo environ
ment that most of us value. For most of us, Logo is clearly
more than just a programming language.

So where will the fuwre take those of us who use Logo
today? Hopefully towards better and better "learner based"
environments; environments that don't control the student;
environments that allow all users to make the computer a
powerful tool in their lives. Let's hope that the developers of
Logo versions continue to provide us with increasingly so
phisticated versions of Logo that can compete successfully
with the other wonderful software tools that are available for
today's newest hardware.

Sharon Yoder, SIGLogo/ISTE
1787 Agate Street
Eugene, OR 97403

r

March 1990 -----LOGO EXCHANGE ----il~~· Page3

Do It Again!
by Tom Lough

During February and March of last year, I reported the
responses of many readers to the question, '-what is your
favorite Logo command and why?" One of the most fre
quently mentioned commands was REPEAT. I got to thinking
about that the other day. What about REPEAT would make
it so popular?

The need for a REPEAT command is spontaneous and
universal, as far as I can tell. One of the ftrSt questions I hear
in a Logo workshop is "Isn't there some way to get the
computer to do this again without having to type it [or scroll
back up to it] each time?" We really seem to have this craving
for an easy method of getting the computer to do the same
thing over and over again. Molly Watt once told me that
REPEAT was not included in the original MIT Logo version,
but was added as a result of this expressed need. Hearing this
makes me rather proud of REPEAT's special heritage.

Another special aspect of REPEAT is its ability to pro
vide surprises. There is something heady about not being able
to predict the outcome of several Logo commands repeated a
bunch of times. I'm sure that nearly all LX readers have
observed the astonishment and delight of a new Logo user
who typed

REPEAT 500 [several Logo commands
here!]

But REPEAT has some surprises in simpler (and more ele
gant) expressions, too. Remember an encounter similar to the
following?

REPEAT 3 [FORWARD 50 RIGHT 60]

Oooops! Now, why doesn't that make an equilateral triangle?

I like the way REPEAT seems to invite experimenting
with something resembling controlled conditions (related to
the so-called scientific method). REPEAT makes it easy to
change one aspect of a group of commands while keeping all
others the same. For example, when students attempt to
discover how to draw a five-pointed star, they often go
through a process such as

REPEAT 5 [FORWARD 50 RIGHT 72]
REPEAT 5 [FORWARD 50 RIGHT 120]
REPEAT 5 [FORWARD 50 RIGHT 150]
REPEAT 5 [FORWARD 50 RIGHT 145]

whereupon they might stop, if the resulting figure seemed to
be good enough. Varying the angle alone gives them some
very special immediate feedback.

Here is a variation that has led to some interesting
discussions about what affects size and what affects shape.

REPEAT 4 [FORWARD RANDOM 100
RIGHT 90]

REPEAT 4 [FORWARD 100 RIGHT
RANDOM 90]

REPEAT 4 [FORWARD RANDOM 100
RIGHT RANDOM 90]

And, sooner or later, students get the idea of trying to put one
REPEAT command inside another. This can lead to some
really complicatedresults, especially if other Logo commands
are sprinkled among the REPEATs.

REPEAT 5 [FORWARD 20 REPEAT 10
[RIGHT 38 BACK 40 REPEAT 4 [RIGHT 65

FORWARD 70] LEFT 20]]

What about the one below? Care to make a prediction before
you type this in?

REPEAT 1 [REPEAT 1 [REPEAT 1
[REPEAT 1 [REPEAT 1
[FORWARD 1]]]]]

Then try

REPEAT 2 [REPEAT 2 [REPEAT 2
[REPEAT 2 REPEAT 2
[FORWARD 1]]]]]

These aspects of REPEAT add up to a rather nice package.
Once your students are hooked on REPEAT, then the stage is
set for you to show them some really powerful stuff! I'll show
you what I mean next month.

PS: What is the smallest value you can get REPEAT to accept
for the number of repetitions of a list of commands and not
produce an error message?

REPEAT 100 [FD 1]

Tom Lough
Founding Editor

POBox 394
Simsbury, CT 06070

Page4 -----L 0 G 0 EXCHANGE ----.a~~- March 1990

"Driving" the Thrtle
by Eadie Adamson

In the October 1989 issue of LX Diane Miller wrote about
"The Tmtle As Car," in which her student used a recursive
procedure to move a car. Diane suggested that there were
methods of steering a car as well. (See, for example, Tom
Lough's Monthly Musings in May 1988, LX, page 3)

For the past several years I have been working with a
group of boys developing motion games. One of their frrst
tasks is to get the tmtle moving as Diane's student did:

repeat 999 [forward 1]

proceeding next to a recursive procedure

to drive
forward 1
drive
end

and then to a recursive procedure with inputs.

to drive :speed
forward :speed
drive :speed
end

A turtle following a set path, however, did not satisfy my
students for long. They knew they needed to control direction
if they were ever going to adapt the procedure to a game!

How Can You Steer It?
There are several ways of adding "steering" to the sim

plest drive procedure, each with its own advantages and/or
disadvantages. Here's one we used that does not require
changing the original procedure.

First, we wrote procedures to output the cardinal direc
tions, using numbers for headings:

to north
output 0
end

to south
output 180
end

to east
output 90
end

to west
output 270
end

Turning a turtle north, simply use seth north. For south, seth
south. That much works fine for setting up a turtle to move,
but how can you use this without changing drive? It's simple,
actually!

Control Is the Answer
Logo Writer has 10 keys that can be programmed so that

when the Conttol key is held down while one of these keys is
pressed, a given command or series of commands or proce
dures will be activated, interrupting whatever else is in proc
ess on the screen. Programmed Control keys can even work
independently of other procedures. Further, you can use them
in the immediate mode as well, almost as if they were
procedures. Puzzled? Read on

The ten "programmable" keys are N 0 P Q Rand V W X
Y Z . To program a Control key use this form:

when "key [
goes]

here is where a task

By typing an instruction such as

when "n [forward 50 right 90]

in the Command Center and then pressing Return, the ''N" key
is activated for as long as the computer remains on, or until the
command clearevents is used. Pressing Control-N causes the
tmtle to go forward 50 right 90.

My students first explored this idea by activating the keys
in the Command Center and then trying them ouL However,
a more efficient way of using these keys is to write a procedure
that sets up the keys to be used. The idea that is sometimes
hard for students to grasp is that if the instructions that define
the actions of the Control keys are in a procedure, the proce
dure must be invoked to activate the keys. Simply writing a
procedure on the flip side does not make the Conttol keys
active.

------ ---· .. ----·····---------"------

March 1990 ------L 0 G 0 EXCHANGE -----IIDJa-• PageS

The keys procedure can eventually go in a startup proce
dure on the page, but it is important to take the time to be sure
the students understand that programming the keys alone is
not what activates them. Spend some time setting up Control
keys in a keys procedure, typing keys to activate the keys,
testing them out, then typing clearevents to clear the keys,
then running the keys procedure again to reactivate them.

With a "drive" and a "keys" procedure, the Control keys
can be used to actually control the turtle's movement. What
is fun for students in this context is perceiving the enormous
extension this makes for their driving procedure without
requiring them to reprogram drive. Somehow writing a
second short procedure (or more) seems easier to many
students!

Another Direction
One of the first things we tried when we first used

Logo Writer was a project just like this. The first task was to
create scenery, then get an object to move with a drive
procedure. Instead of using Control keys for direction, how
ever, we turned them into keys which changed the speed of the
turtleandeventuallymadeakindofspeedometerthatreported
the speed. How? Read on ...

Changing Speeds
Students needed to have a drive procedure with inputs for

the speed. Then I explained about the Control keys and
showed them how to program a turtle to move faster. Pressing
a Control key was used to alter the input to drive.

First, think about what occurs when something goes
"faster." The drive procedure has an input, speed, that
represents the "speed" in turtle steps. If "faster" is defmed in
terms of speed, you are increasing -adding to- the speed. The
speed in the drive program is the input to forward, represent
ing the number of turtle steps, or the distance, to be advanced
each time the drive program is called.

Prior to working with Control keys, the method many
students used to make their cars go faster was to stop the
procedure and restart with a larger number for input. Faster,
then, meant increasing the input for drive. How can this be
expressed with a Control key? Like this:

when "z [make "speed :speed + 1]

What we are saying is: "Take the value of speed the turtle is
currently using (a number) and add one to it Call this the
speed." We increment the speed by 1. This takes only a

fraction of a second to take effect. Pressing Control and the
letter z while drive is operating makes the turtle go faster;
pressing the two keys again increases the speed again.

Slow Down or Stop!
Eventually the question arises: "How can I slow down the

turtle?" There already is a model for making the speed faster.
What makes a speed slower? Subtract instead of add! Most
students have no difficulty figuring this out and choosing
another key to program for slowing down the turtle.

Soon another question inevitably comes up: "How can I
make the turtle stop without stopping the procedure?" Stop
pingmeansthespeedisO. Wewanttomakethespeednothing,
not less than the current speed or more than the current speed,
but 0. That change can be expressed as:

make "speed 0

All we want is for the speed to be 0: nothing, no speed, not
moving.

Once these three options are programmed, the other keys
can be used for changing directions, changing "lanes" if the
cars are on a highway, and so on. Some students wrote a
"pass" procedure as well.

Speedometers
Earlier I mentioned speedometers. How can you get your

program to tell you the "speed" each time a Control key is
pressed to change the speed? Here's one way to handle the
problem.

First, write a speed procedure. This procedure will
display the speed in the Command Center, rather than on the
screen. Since there may be commands in the Command
Center, the procedure should clean that up first, then show the
current "speed" of the turtle, the value of the variable speed.
It might look like this:

to speed
cc
type:speed
end

(I prefer to use the command type here, rather than
show. While show will display numbers without
brackets, it poses a potential problem: if we add any
text the phrase will then appear in brackets. type,

Page6 -----LOGO EXCHANGE-----~~~~· March 1990

Logo ldl'as - ('Cmtinurd

on the other hand, displays text without brackets.
The fact that the cursor is left at the end of the line can
be taken care of in two ways: either add one more
line: type char 13 (char 13 is the ascii value for the
Return key)- or simply clear the commands as we
did here each time the procedure was invoked.

Some students chose to print the speed on the screen. They
needed to change the speed procedure to clear the text, ct. in
order to avoid a string of numbers running down the left side
of their scenery.)

More complex versions of a speedometer might use a
multiplier and report a relative miles per hour:

show sentence :speed * 10 "m.p.h.

This speed procedure is then used with each speed-altering
Control key. Insert the word speed after the commands to
change the value of speed. If there are three keys programmed
to alter the speed, be sure to add the word speed just before the
end bracket in each command. Here's an example:

when "z [make "speed :speed + 1
speed]

Be sure to type the word keys (or whatever procedure name
has been used to set up Control keys) before trying this.
Simply making a change in the keys procedure on the flip side
does not have any effect on the Control keys until the proce
dure is invoked again.

Type drive 1 to begin. Watch the Command Center as keys
are pressed to speed up and slow down or stop. Each time the
speed is changed, the speed procedure will also be called into
action. Voila! a speedometer!

WATER

-----------~------------~--

Putting It All Together
The final important step is to write a superprocedure that

sets up the keys and starts drive. Most of my students like to
be able simply to type "go" and have things begin. Later the
"go" procedure could also contain a setup procedure that put
the vehicles into starting position. A simple "go" procedure
would look like this:

to go
keys
drive 1
end

More ideas on driving at a later date. Meanwhile, enjoy the
ride!

Eadie is a computer coordinator at The Allen-Ste
venson School, an independent school for boys in
New York City.

Eadie Adamson
1199 Park Avenue, Apl 3A

New York, N.Y. 10128

NECC '90
June 25-27, 1990

Opryland Hotel
Nashville, Tennessee

NECC promotes interactions between
• Practitioners and Researchers
• Computer Educators from kindergarten through

graduate school
• Educators and Vendors
• Professionals from every discipline

For more information,
contact:

ISTE/NECC '90
University of Oregon
1787 Agate Street
Eugene, OR 97403
503/686-4414

For information about
exhibits:

Paul Katz
Continuation Center
1553 Moss Street
Eugene, OR 97403
503/686-3537

. ·-· ----·---- --·- ---

March 1990 -----LoGo ExcHANGE---~~ Page7

by Lani Telander

As a teacher, I'm always looking for activities that will
keep my swdents interested and my objectives accomplished
at the same time. I have been doing a Tangram Unit with fifth
graders for the past three years and each year I get more
excited about the results.

My objectives for the Tangram Unit are to have the
students work in a cooperative-learning activity, effectively
using Logo Writer as a programming tool, and end up with a
fmished product of which they can be proud.

I begin by giving teams, usually two to three swdents to
a team, the seven tangram puzzle pieces. They use the first
couple of sessions to come up with a design the team agrees
upon, using all seven pieces (some teams use more!) Each
team then traces around the pieces on paper so they have their
drawing from which to work. All of this work is done away
from the computer.

The first step when the students begin working on the
computer is to write a procedure for each tangram piece. This
amounts to writing five procedures, since the tangram pieces
consist of 1 square, 2 small triangles, 1 medium triangle, 2
large triangles, and 1 parallelogram. We use the following
procedure for the square as the base upon which to write the
other procedures:

TO SQ
REPEAT 4 [FORWARD 30 RIGHT 90]
END

By using FORWARD 30 the tangram designs fit nicely on the
screen without wrapping.

After the above procedures have been written, the chal
lenging work of positioning the turtle begins before the next
shape can be called up.

by Susan
Bowers
and
Emilie
Hitch

-------------~~---~

These fifth graders worked eagerly on this unit right up to
the last session. They made use of the word processing feature
of LogoWriter to write captions, TONE to enhance their
designs with music, and, of course, color. In addition, this has
been the most effective way for me to teach the Total Turtle
Trip Theorem and SETHeading.

by Jason Grais and Geoffrey Nadler

This past year, the conclusion of our Tangram Unit
coincided with Grandparents' Day at our school. We had the
Computer Lab open so the fifth graders could share their work
with their grandparents and parents. The enthusiasm and
pride they showed for all their hard work was contagious!

Lani Telander
The Blake School
Highcroft Campus

301 Perry Lane
Wayzata, MN 55391

PageS -----LOGO EXCHANGE ----"11~~ March 1990

Pencil & Paper or the Turtle?
by Dorothy Fitch

Have you noticed that sometimes the pictures that you
plan are much easier to draw with a pencil and paper than to
create using the turtle? And other times, it seems much easier
to use the turtle than to attempt the same design with a pencil?
This month, we 'II take a look at different ways of approaching
Logo designs.

Last month's column had a lot to do with stars. It
reminded me of another stellar (and true) example of how
there is often more than one approach to a problem in Logo.

Cathy, age 6, used Kinderlogo, a single keystroke Logo
program in her first grade classroom once a week. The only
commands available to her were F (to move the turtle forward
10 turtle steps), R (to make a 30 degree right turn), and L (to
rnakea30degreeleftturn). PriscillaFlanagan,herteacherand
Kinderlogo co-author, was present when Cathy created her
star designs and related these fascinating observations to me.

With just three com
mands to use, Cathy drew this
design one fall day. The intent
was obviously a star and Cathy
asked if her picture could be
saved, although she didn't
seem totally pleased with the
result. But, her allotted time at
the computer was up. We all
know how frustrating that can
be!

Later the same day, Cathy
asked her teacher if she could have
another turn at the computer. Al
though this was not normally al
lowed, her teacher sensed that this
was somehow important and let
her have some additional time.
Cathy's next star looked like the
star to the right

What happened between the time Cathy drew the first
star and the time, just a few hours later, when she drew the
second star, we can only imagine. It is clear, however, that she
must have spent some amount of time during the day thinking

about the star and how she could improve on it She must have
known that she needed to use a different approach. Did the
solution come in a flash, like a cartoon light bulb, or did she
spend time doodling with a pencil, trying out possibilities? At
some point she must have reached the conclusion that she
should perhaps draw the star in Logo the way she would draw
it with a pencil, not necessarily the way she'd seen stars drawn
in books, with just the outline showing. Cathy was pleased
with her second attempt at a star.

It really is quite exciting to see such concrete evidence of
a thought process. Having witnessed this one isolated inci
dent, it makes us wonder how often similar problem-solving
occurs when Logo isn't there to provide "hardcopy."

Epilog: Cathy created this fmal star in the spring of the
same year-a new variation on a familiar theme, and a neatly
symmetrical one at that!

In this example, drawing the star in the same way you
would with a pencil seemed to be the best approach. But that
is not always the case in Logo. Consider a typical tic-tac-toe
design, made up of just four straight lines.

If you were to draw this in Logo the same way you would
with a pencil, you would have to pick the pencil up several
times. This is the easiest way for humans, though not neces
sarily for turtles. Although in Logo you can determine the
exact spots for placing the pen, your program might end up
rather long, inflexible and hard to debug, like one of these
rather gruesome examples: ·

Mmch 1990 -----LOGO EXCHANGE-----~~~~· Page9

TO TICTACTOE
PENUP
FORWARD 45
PEND OWN
BACK 90
PENUP
FORWARD 90
RIGHT 90
PENUP
FORWARD 30
LEFT 90
PEND OWN
BACK 90
PENUP
FORWARD 60
LEFT 90
PEND OWN
BACK 30
FORWARD 90
RIGHT 90
PENUP
BACK 30
LEFT 90
PENDOWN
BACK 90
END

TO TICTACTOE
PENUP
SETXY -15 45
PENDOWN
SETXY -15 (-45)
PENUP
SETXY 15 45
PENDOWN
SETXY 15 (-45)
PENUP
SETXY -45 15
PEND OWN
SETXY 45 15
PENUP
SETXY -45 (-15)
PENDOWN
SETXY 45 (-15)
END

These procedures work, but is either one the best way to
draw it in Logo? Take a closer look at the tic-tac-toe design.
Can you see any ways to repeat a pattern to draw the design?
Remember that anytime that you can reduce a design to a
repeated pattern, you gain a set of instructions that are:

• more efficient
• easier for you to debug or modify
• easier for others to read and understand
• more powerful and flexible
• more easily adapted for use in other projects that you

develop

Here are some ideas for other ways to draw the tic-tac-toe
design. You wouldn't choose any of these ways to draw the
design with a pencil and paper, but they are rather suited to the
turtle.

1. The C pattern
Picture the tic-tac-toe design made up of 4 squared-edged

letter C's that look like this:

Just repeat the pattern four times for the tic-tac-toe
design.

TO C
LEFT 90
FORWARD 30
BACK 30
RIGHT 90
FORWARD 30
RIGHT 90
BACK 30
FORWARD 30
END

2. The L shape design

TO 4C
REPEAT 4 (C]
END

In this version, the tic-tac-toe design is created using four
double-L shapes, like this:

TO L

FORWARD 90
BACK 30
RIGHT 90
BACK 30
END

3. The letter T

TO 4L
REPEAT 4 (L]
END

Here is a version of the tic-tac-toe design that uses a
repeated T-like shape:

TO T
FORWARD 60
BACK 30
RIGHT 90
FORWARD 30
BACK 60
FORWARD 30
END

TO 4T
REPEAT 4 (T]
END

Page 10 -----LOGO EXCHANGE ----a~~· March 1990

Br:,.:innrr's Corner - continurd

4. The jump, tum and draw method
Finally, this version causes the turtle to perform a pirou

ette midway through each repetition of the pattern. It goes
forward, then hops over to the beginning point of the next line.
It is similar to the L pattern above, but is actually a little
quicker. Repeat the pattern four times to complete the tic-tac
toedesign.

TO JUMP
FORWARD 90
LEFT 135
PENUP
FORWARD 42.43
PEND OWN
LEFT 135
END

TO DRAW. AND. JUMP
REPEAT 4 [JUMP)

END

The forward number 42.43 in the procedure JUMP
(above) is the length of the hypotenuse of a right triangle
whose sides are oflength 30. The length is computed using the
Pythagorean Theorem: cz= az+ bl, ore (the hypotenuse)= the
square root of az + b2• In Logo, you can fmd the length of the
hypotenuse by typing:

PRINT SQRT (30 * 30 + 30 * 30)

Other Challenges
You can probably come up with additional ways of

drawing the tic-tac-toe design. Why not challenge your
students to write one or more REPEAT statements to draw the
design?

Think of how you would transfer other pencil doodlings
to Logo. Sometimes, as in the case of the star, the pencil
approach may be quite satisfactory. For other designs, you
may have to use a non-traditional approach. It is fun to try to
draw the same design in as many ways as you can!

How would you draw letters of the alphabet using the
turtle? I'll bet that you draw them differently with the turtle
than with a pencil! Try drawing some letters exactly as you

would with a pencil. For example, for the letter H you would
first draw two vertical lines (picking the pen up in between),
then connect them with the horizontal bar.

It becomes quite interesting to compare pencil techniques
with turtle techniques, doesn't it?

A former education and computer consultant,
Dorothy Fitch has been the Director of Product
Development at Terrapin since 1987. She can be
reached at:

Terrapin Software, Inc.
400 Riverside Street
Portland, ME 04103

Man:h 1990 -----LOGO EXCHANGE ----.n~~· Page 11

Third Grade Dynamic Poetry
by Jandy Bird

Since Logo Writer provides an excellent opportunity for
cooperative learning, we decided to design a project for third
graders in the computer lab that utilized the "jigsaw" tech
nique of cooperative learning in a Logo Writer project. (See
Slavin, 1988, Maring and others, 1985.) The jigsaw tech
nique is quite simple in concept, but it takes planning to
organize it. The idea of jigsaw is that a group is given a
project to do cooperatively. Then the group is temporarily
split up and each member of the group gets training in
different specific skills necessary for completion of the
project-a piece of the puzzle. Each member becomes an
"expert" in something, and it is each expert's job to return to
the group and teach the skill to the other group members.
The project we chose was the translation of a poem into a
piece of dynamic writing using LogoWriter. Time did not
permit the students to write their own poems for this project,
so the poem selected was "Shapes"by Shel Silverstein, a
favorite poet of most of the students.

The fll'St step was to demonstrate dynamic writing so the
students could understand what the project was about. The
beginning of a simple story was shown to the students,
simply printed on the page.

Once upon a time there was a cat who lived by
himself in a house at the edge of the forest. One
day, the cat looked out of the window and saw the
most beautiful white rabbit in the yard.

(The story used the cat, rabbit, house and tree because the
shapes were already available and familiar to the students).

Then the students were shown a dynamic version of the
beginning of the story. After seeing the dynamic version,
they were asked to figure out how the procedures worked.
The flip side of the dynamic story page was analyzed and
discussed.

The procedures for the dynamic version of the story are
as follows:

First, to draw the forest :

to forest
circler 60
pu
right 90
forward 20

setc 2
setsh 23
pd
shade
ht
end

This procedure uses the tool procedure, circler, for drawing
a circle.

Then the house

to house
pu
setpos [-45 25]
setc 5
setsh 20
st
pd
stamp
end

Then to bring in the cat

to cat
ht
setsh 21
setc 4
seth 180
pu
forward 20
st
repeat 10[forward 3]
end

Finally, to put the frrst sentence of the story together

to senl
ct
rg
ht
print [Once upon a time there was a

cat who lived by himself in a
house at the edge of the forest.]

wait 60
forest
house
wait 20
cat
end

Page 12 -----LOGO EXCHANGE---~~ March 1990

The wait commands are added to give time between the
execution of the different procedures.

The second sentence of the story was animated as fol
lows:

First the window

to window
draw.window
shade.window
end

to draw.window
ht
forward 50
repeat 3[right 90 forward 100]
right 90
forward 50
right 90
forward 100
back 50
seth 0
forward 50
back 100
end

to shade.window
pu
setpos [35 20]
setc 2
setsh 23
pd
shade
pu
setpos [80 20]
pd
shade
end

Then the action

to lookout
setsh 21
setc 4
pu
st
setpos [-130 -50]
seth 90
repeat 20[forward 5 wait 1]
pd
stamp
end

Then to put the second sentence
together

to sen2
ct
rg
print [One day, the cat looked out of

the window and saw the most beau
tiful white rabbit in the yard.]

wait 60
window
lookout
end

Then a combination of the first and second sentence anima
tion procedures

TO DOALL
senl
wait 60
sen2
wait 60
end

Finally, a superprocedure gets the circle tools and makes it
run automatically.

to startup
ct
gettools ~turtle.tools
do all
end

This demonstration made the process of dynamic writ
ing clear to students before they began, and gave them an
overview of how procedures can be linked in superproce
dures.

The next step was to divide the class into groups of three
and hand out a printed version of the poem they were going
to use. As noted, we used the poem "Shapes" from A Light in
the Attic by Shel Silverstein.

A square was sitting quietly
Outside his rectangular shack
When a triangle came down- kerplunk!
And struck him in the back.
"I must go to the hospital,"
Cried the wounded square,
So a passing rolling circle
Picked him up and took him there.

March 1990 ------LOGO EXCHANGE-----... Page 13

This poem was selected because students were familiar with
the poet. they had aJready worked with shapes and proce
dures to draw them, and because there are lots of possibilities
for action in the poem.

Each group was to read the poem together, and to map
out a simple story plan of how they would make the poem
dynamic. When the groups had their plans complete, the
jigsaw technique was implemented. Each member of the
triad was assigned to a teaching group to review and learn
different LogoWriter techniques that the triad would need
for this project. That meant that each triad would be made up
of three "experts" on different aspects of Logo Writer. The
teaching groups were divided as follows:

l. This group learned Logo Writer terms for putting text on
the page such as PRINT, TYPE, SHOW, INSERT.
They also learned the WAIT command for pacing the
presentation of text or graphics.

2. This group learned about how to place the turtle on the
page where they wanted it to be. Using turtle move, the
students learned SHOW POS and then SETPOS. (Note:
There was not a lot of time spent on the fact that stu
dents are dealing with Cartesian coordinates here. The
use of these numbers was simply shown as a way to get
the turtle in position. A nice followup math lesson
might deal with the position coordinates by them
selves). This group also learned and reviewed SETH as
a way to turtle in the direction you want We used a
turtle compass on an index card with a cin:le and num
bers to show heading positions.

3. This group learned how to make shapes of their own on
the shapes page.

The demonstration, planning, and creation of experts in
three areas took one lab session of about an hour. There were
obviously three teachers available to teach the expert groups.
If it is not possible to have the three expert groups meet
simultaneously, you would have to arrange the schedule
differently. Up to this point, however, there were only three
computers necessary for the project If there is only one
teacher directing this, then only one computer would be
necessary to this point

The remainder of the project was to have the groups
work at the computer to make the poem dynamic. The
students had about three lab sessions to work on this, plus
whatever time the teacher made available to them in between
lab sessions. Some groups did not complete the entire poem

by the end, but everyone had part of the plan complete. At
the end, the versions were shared.

Since several third grade classes did the same project, it
was also possible to share between classes. There was lots of
variety in approach to the poem, which provided a good
example of creative problem sovling. Many students be
came involved in LogoWriter to a much greater extent
through this project, and they also learned about worldng to
gether. Some groups adventured into using more than one
turtle, and others used sound. Some students even gave up
recess in order to work extra time on the project! Although
this project takes some time and organization, it is engaging
to students and teachers alike, and it provides extensive
experience with cooperative learning and problem solving
strategies.

References
Cooperative Learning in Social Studies Education: What

Does the Research Say? (1985) Washington, DC:
National Institute of Education. (ED 264 162)

Maring, Gerald H., et al. (1985). Five cooperative learning
strategies for mainstreamed youngsters. The Reading
Teacher,39(3),31~313.

Silverstein, Shel. (1981). A Light in the Attic. New York:
Harper and Row.

Slavin, Robert E. (1988) Student Team Learning: An Over
view and Practical Guide. Second Edition. Washing
ton, DC: National Education Association. (ED 295
910)

Jan J. Bird, Ed.D
Conover Road School

80 Conover Road
Colts Neck, New Jersey 07722

201-946-8590
CIS: 73517,3270

Page 14 -----LOGO EXCHANGE ----11~~· March 1990

Transgendered Neology
by Judi Harris

Have you ever wondered why more men don't get mani
cures, or why women go through menopause? Might it be
more appropriate for women to get womanicures and go
through womenopause? Perhaps some playful awomend
ments to our dictionaries may encowage students to exper
iwoment with syllabication and new vocabulary words in true
Logo fashion.

Syllabic Diwomensions
Which English syllables seem to specify gender? Your

students will probably enjoy making lists of words with
seemingly masculine and feminine parts. <groan> From
these, you can code a IDSYU.ABLES procedure:

TO HISYLLABLES
OUTPUT [MAN MANS MEN MENS MENT MENTS

MEND MENDS LAD LADS HE BOY BOYS
HIM HIS MALE]

END

A corresponding HERSYllABLES procedure should
then be defmed, which outputs an ordered list of the feminine
syllabic complements of IDSYllABLES output. Both pro
cedures can easily be awomended as new syllables and their
obverses are discovered.

TO HERSYLLABLES
OUTPUT [WOMAN WOMANS WOMEN WOMENS

WOMENT WOMENTS WOMEND WOMENDS LASS
LASSES SHE GIRL GIRLS HER HERS
FEMALE]

END

Don't be surprised if your trans gender explorers become a bit
girlsterous during this activity.

Creating a Neological EnvironWOMENt
To transpose words with male syllables into their femi

nine counterparts, three Logo tools are needed. The procedure
SUBSTITUTE searches user input for matches in IDSYL
LABLES' syllable list, then outputs corresponding HER
SYLLABLES elements.

TO SUBSTITUTE :WORD.PART
IFELSE MEMBER? :WORD.PART HISYLLABLES

[OUTPUT ITEM (ELEWOMENT :WORD.PART
HISYLLABLES) HERSYLLABLES] [OUTPUT
:WORD .PART]

END

SUBSTITUTE was written with Allison Birch's ELEMENT
used as a subprocedure. We will; of course, rename the tool
ELEWOMENT for obvious reasons.

TO ELEWOMENT :ITEM :OBJECT
IF EQUAL? :ITEM (FIRST :OBJECT)

[OUTPUT 1] OUTPUT 1 + ELEWOMENT
:ITEM BUTFIRST :OBJECT

END

The third tool, a superprocedure called NEW, accepts a
list of syllables that comprise a word, and modifies it to reflect
a more feminine dimension.

TO NEW :LIST
IF EMPTY? [OUTPUT "]
OUTPUT WORD (SUBSTITUTE FIRST :LIST)

NEW BUTFIRST :LIST
END

User Involvewoment
To wield these neoteric tools, the user types (for ex

ample):

PRINT NEW [LA MEN TA BLE]

to which the computer responds:

LAWOMENTABLE

or,

PRINT NEW [PHE NO MEN ON]

which is transformed into:

PHENOWOMENON

It is up to you and your students to decide if this is an
amusing and instructive supplement to traditional syllabica
tion practice and vocabulary study, or merely (as the computer
printed) a lamentable phenomenon.

March 1990 ------LoGo ExcHANGE----~~ Page 15

Analagous Arguwoments
It certainly should be womentioned that complewomen

tary examples of chauvinistically feminine words have in
vaded our language. Is it logical that most of the heroic
patients who suffer from hernias between hospital sheets are
male? Although sheep seem aptly named, especially when
they travel in herds, must all of their human attendants be
shepards? Male hennit crabs must also find this dimension of
the language quite unmanageable (unless, of course, they live
in manhattan). Yet, with a subtle amendment to the SUBSTI
lUTE procedure, gender management becomes a simple
accomplishment.

TO SUBSTITUTE :WORD.PART
IFELSE MEMBER? :WORD.PART

HERSYLLABLES [OUTPUT ITEM
(ELEMENT :WORD .PART HERSYLLABLES)
HI SYLLABLES] [OUTPUT :WORD. PART]

END

PRINT [WOMAN I ZER]

MANIZBR.

Perhaps it is even more desirable to childcott this
bifurcatedpersonifestation oflingual theirtory by suggesting
that your students liberate lexicographic entries with a
THEIRSYLLABLES procedure to add to their Logo
transgender toolkit.

TO THEIRSYLLABLES
OUTPUT [PERSON PERSONS PEOPLE PEOPLES

PEOPLET PEOPLETS PEOPLED PEOPLEDS
CHILD CHILDS S/HE YOUNGSTER YOUNG
STERS THEM THEIRS UNSPECIFIED]

END

TO SUBSTITUTE :WORD.PART
IFELSE MEMBER? :WORD.PART HISYLLABLES

[OUTPUT ITEM (ELEMENT :WORD.PART
HI SYLLABLES) THEIRSYLLABLES]
[OUTPUT :WORD.PART]

END

No matter which nowomenclature you and your students
select, it is my hope that this per son uscript has, at least, added
an interesting (if not boshemian) dimension to your womenu
of word study activity options.

AcknowledgeWOMENts
Birch, A. (1986). The Logo project book: Exploring words

and lists. Cambridge, MA: Terrapin, Inc.

Searle, R. (1988). Ronald Searle's non-sexist dictionary.
Berkeley, CA: Ten Speed Press. [Note: Graphically
explicit content makes this book inappropriate for use as
a classroom resource.]

Judi Harris taught students in Philadelphia-area ele
mentary through graduate schools to use computers
in teaching and learning for six years. She now does
similar work at the University of Virginia's Curry
School of Education, where she has recently com
pleted her doctoral work in Instructional Technol
ogy. She can be reached at

Judi Harris
621F Madison Avenue

Charlottesville, VA 22903
CIS: 75116,1207

BitNet: JudiH@Virginia

Page 16 -----LOGO EXCHANGE-----~~~--· March 1990

by Charles E. Crume, B.S.

The RANDOM primitive ofLogoWriter accepts a single
input and reports an integer between zero and that number.
For example, the command:

RANDOM 6

would report a number between zero and five, not a number
between one and six as might be expected. Therefore, this
specific command would not be appropriate to simulate the
rolling of a die.

To circumvent this inconvenience of LogoWriter's
RANDOM primitive, the command:

1 + RANDOM 6

could be used. The RANDOM 6 portion of the command
reports a value between zero and five. Then, one is added to
that value giving a final result between one and six. If
however, a child writes the above command as:

RANDOM 6 + 1

it will not work properly. This form of the command reports
a value between zero and six (not between one and six as
would be expected). This is because the operation of addition
(+) takes precedence over the primitive RANDOM. Writing
the command in the above manner requires parentheses, as
shown below:

(RANDOM 6) + 1

The parentheses are needed so that the RANDOM func
tion is performed before the addition. In either case, both
forms of the command are probably more complex and
confusing than they need to be.

This article presents three useful procedures along with
some sample programs that may make working with random
numbers easier.

The first procedure, called RND, reports a positive ran
dom integer within a user specified range. The code is shown
below:

TO RND :LOW :HIGH
OUTPUT (RANDOM :HIGH - :LOW + 1) +

:LOW
END

This procedure requires the inputs LOW and lllGH
(where LOW is the lower limit and HIGH is the upper limit).
The procedure first computes the difference between the
upper and lower limits (subtraction takes precedence over the
RANDOM primitive) and then adds one to this value (addi
tion takes precedence over the RANDOM primitive). Next,
the procedure computes a random number between zero and
this value. Finally, the procedure adds the lower limit to the
random number. For example, the command:

RND 1 6

will always return a number between one and six inclusive.
Changing the range is easy. For example, to simulate rolling
a pair of die (whose output will always be a number between
two and twelve), the command:

RND 2 12

is used. To obtain a random number in the range of 100
through 999, the command:

RND 100 999

is used. Compare the example above to

100 + RANDOM 900

or the form requiring parentheses

(RANDOM 900) + 100

neither of which have the value 999 (the upper limit) in them.

A sample program that uses the RND procedure plays a
number guessing game. The child chooses a range of num
bers, the program selects a number at random from that range,
andthenthechildtriestoguessthenumber. Thecodeisshown
below:

TO GUESS
RG
HT
CT
PRINT []
INSERT [PLEASE ENTER LOWER LIMIT ...]
MAKE "LOWER FIRST READLIST
INSERT [PLEASE ENTER UPPER LIMIT ...]
MAKE "UPPER FIRST READLIST
MAKE "NUMBER RND :LOWER :UPPER
CT

l

'

March 1990 -----L 0 G 0 EXCHANGE ---...-o~DJ-. Page 17

MAKE ~GUESS.LIST []
CHECK
PRINT []
PRINT []
(PRINT [IT TOOK YOU] 1 + COUNT

:GUESS.LIST [TRIES TO GUESS THE
NUMBER.])

END

TO CHECK
INSERT [WHAT NUMBER DO YOU GUESS?]
MAKE "GUESS FIRST READLIST
IFELSE MEMBER? :GUESS :GUESS.LIST

[PRINT [YOU ALREADY GUESSED THAT
NUMBER!] CHECK STOP] [MAKE
"GUESS.LIST LPUT :GUESS
:GUESS.LIST]

IF :GUESS < :LOWER [PRINT [YOUR GUESS
IS BELOW THE LOWER LIMIT] CHECK
STOP]

IF :GUESS > :UPPER [PRINT [YOUR GUESS
IS HIGHER THAN THE UPPER LIMIT]
CHECK STOP]

IF :GUESS = :NUMBER [PRINT [YEA, YEA,
YEA. YOU GOT IT!] STOP]

CHECK
END

Whereas the command RND 2 12 simulates the rolling of
a pair of die, it returns only one value - the total of both die.
A procedure that returns two numbers (each representing one
of the die) is called DICEROLL. This procedure can be useful
in analyzing how often each number appears on each die and
for knowing when doubles have been rolled. The code is
shown below:

TO DICEROLL
OUTPUT LIST RND 1 6 RND 1 6
END

The output from the command:

PRINT DICEROLL

can be any of the following:

[1 4] [2 2] [6 4]

A sample program that rolls the dice electronically is
shown below:

TO ROLL
RG
HT
CT
LOOP
END

TO LOOP
PRINT []
INSERT [PRESS RETURN TO ROLL THE

DICE ...]
IGNORE READLIST
(PRINT [YOU ROLLED:] DICEROLL)
LOOP
END

TO IGNORE : RETURNKEY
END

Sometimes, a list of random numbers is needed. Instead
of using the RND procedure in a REPEAT statement or
recursive procedure, the procedure below can be used:

TO RNDLIST :LOW :HIGH :HOWMANY
IFELSE :HOWMANY = 1 [OUTPUT RND :LOW

:HIGH] [OUTPUT SENTENCE RND :LOW
:HIGH RNDLIST :LOW :HIGH
: HOWMANY - 1]

END

The procedure RNDUST requires three inputs. The frrst two
are the lower and upper limits as described for the procedure
RND. The third input specifies how many random integers
you want in the list. For example, the output of the command:

RNDLIST 1 6 10

can report any of the following:

[3 4 2 3 5 4 1 1 3 5]
[1 1 4 3 2 5 6 4 5 2]
[4 3 5 2 1 5 1 5 4 3]

Each list contains 10 integers, each between one and six inclu
sive.

Charles E. Crume, B.S.
Technical Consultant

University of Nevada System Computing Services
University of Nevada-Reno

Page 18 -----LOGO EXCHANGE ---~IIJJ-- March 1990

edited by
A. J. (Sandy) Dawson

Henri Picciotto is a teacher of elementary and secondary
schools in San Francisco. He sent a long article which
recounted his teaching experiences over an 18-year period
using BASIC, Logo, and now Boxer. In each case, Henri was
trying create educational software that fostered discovery
based learning. Unfortunately, space does not allow for the
inclusion of Henri's entire article.

Henri and his nine-year-old son came to Logo about the
same time. Henri writes, "I was thrilled - here was a world
which my ... son and I could explore together. There was
plenty to learn for both of us." Henri began teaching Logo
instead of BASIC, and though he ran into some difficulties in
doing this, he " .. .learned Logo myself. Armed with a new
understanding of how computers can enhance the learning of
mathematics, I decided to figure out how to apply this knowl
edge to my daily work. While I appreciated the wealth of non
traditional mathematics that could be taught with turtle
geometry .. .! had little opportunity to explore these areas."

In what follows, Henri describes his efforts to find ways
to use Logo in teaching the more traditional mathematics
topics.

Teacher-Created Educational
Software: Logo Tools
by Henri Picciotto

I set out to build an encyclopedic set of programs in that
language, to be used in conjunction with the secondary mathe
matics curriculum (Picciotto, 1989). These include aGE
OMETER, which adds the labeling of points to the Logo
repertoire, and allows students to make geometric construc
tions on the screen, measure them, develop conjectures, and so
on; and several games, each one a microworld, the exploration
of which throws light on a specific curriculum area.

The most widely used program is a function GRAPHER,
which has become an essential tool for the learning of algebra,
trigonometry, and calculus at my school.

This is an example of an activity we use in Algebra 1: the
students are given these arrangements of lines in various
configurations. They are asked to create equations that will
yield the given graphs. (This can be done before they get any

formal exposition to such concepts as slope and intercept,
providing an opportunity to discover those concepts, or later
on, as a review of the concepts.) The flavor of this software

tool is quite different from the BASIC programs I had previ
ously developed. For one thing, the program does not include
any preconceived lessons. The teacher has to plan the lesson
(an old-fashioned approach, granted, but one which works!)
Moreover, the program does not control the student. The
student can select any of the figures as a goal, and pursue them
in any order. An input that is incorrect for one figure may be
correct for another one. This leads to the possibility of many
alternative strategies, and in fact students develop different
styles to attack the problems. Beyond this, it becomes pos
sible for the students to set their own goals. (For example: how
would one graph a family of lines that intersect at the point
(1, 1)?) Discussions among students become very focused and
productive. The teacher is presented with a plethora of teach
ing opportunities.

My favorite program in the package is calledLOCA TER.
It allows the student to explore locus problems-with several
uses in Geometry, Algebra 2, Trigonometry, plus the possibil-

r

March 1990 -----LoGo ExcHANGE ---~D-- Page 19

ity of offbeat investigations. The following figures show how
by setting

PF/PD= 1,

the program allows students to fmd and plot points that are
equidistant from the line and point F.

•)\ '
. .

. F .·· r··

The resulting curve is a parabola, a classical topic in high
school math, approached here in a pleasing geometric way.
But unusual questions can also be asked.

The next figure shows the result of the investigation of the
question: "From where in the plane does AABC appear to be
isosceles?" (In other words, for what points P does CPA =
CPB?)

LCPB=O
... ...
··.; ..

·.: .. ·

The result, an unexpected mixture of rays and curves, would
not have been easy to predict without the help of a computer
tool.

These Tools and Games are complex, and well beyond
the ability of a novice programmer to write. However, they do
not attempt to be professionally slick or fool-proof. For
example I did not try to filter input at the keyboard in order to
prevent all possible mistakes at the expense of constraining
the user. Thus, these programs are less polished, and some-

times slower and less powerful than the best among compa
rable non-Logo programs, such as the Sunburst products. But
they do have five major advantages:

First, the user interface is consistent: all programs func
tion roughly in the same way, so that less classroom time is
spent learning to use the programs, and more is spent actually
using them.

Second, the tools can be demystified, even to the non
programmer, by using them at various levels. For example,
one can graph a curve (say a parabola) by entering its equation
(e.g., y = x2- 3) and then typing GR. But one can break down
the process, and plot each individual point (e.g., POINT 2 1).
One can quickly calculate they- coordinate of any point on the
curve (F 4 will reb.lm 13). By plotting several points "manu
ally," students simulate both the old-fashioned method of
plotting by hand, and the automated procedure embodied in
the command GR, and bridge the conceptual gap between the
two. Similarly, any tool can be broken down into smaller,
more understandable chunks.

Third, the code is accessible to any Logo-literate student
or teacher, allowing them to inspect or modify it as they see fit,
and conveying the idea that programming in Logo, a skill they
know is within their reach, can yield powerful, useful tools.

The fourth advantage of Logo tools and games over the
slickly packaged competition is that the user has full access to
the Logo language at all times - its computational, graphic,
and programming capabilities. This means that considerably
more power is always at the student's fingertips than one
could conceivably include in any one program. (For example,
one can design a lesson on area and perimeter of rectangles
that uses Logo to draw various rectangles of a given perimeter
and output their area for various lengths, with the goal of
fmding the rectangle of maximum area. Then, using GRA
PHER, one can plot area as a function of length of one side,
and look for the maximum by inspecting the graph. It would
be absurd to try to create a special program for each lesson like
this one that one might think up.)

Fifth, students can write their own procedures that call
mine as subprocedures. For example, in the GEOMETER,
they can write a procedure to inscribe a circle in a triangle, by
using my BISECT,LLINT (line-line intersection), DROPTO,
and CIRCLE procedures as if they were primitives.

Overall, the introduction of Logo tools and games has
been a tremendous boon to the mathematics department at our
school. It has worked hand-in-hand with the introduction of

Page20 -----L 0 G 0 EXCHANGE -----liD~!-~· March 1990

cooperative learning groups and a discovery-based approach
to learning math. Nevertheless, the last three advantages
described above have not yet been fully realized, mainly
because most of our students do not know Logo or, for that
matter, any programming language. As a result, fiddling with
the procedure that conttols screen colors has been the major
way that my students have modified my programs. Of course,
I had hoped for a much richer interplay between the user and
the tool. To try to achieve this, we now demand that all
students take a half-semester inttoduction to Computer Sci
ence as a graduation requirement This will in fact mean Logo.
The result ofsuch a policy, within a few years, will be an entire
community that shares some literacy in the computer lan
guage in which the software they use in their daily work is
written. This may be a ftrSt in education, and I anxiously await
the results of the experiment

Reference:
Picciotto,H. (1989). Logomath: Toolsandgames. Malden,

MA: Terrapin, Inc.

Henri Picciotto can be contacted at
The Urban School of San Francisco,

1563 Page Street,
San Francisco, CA 94117

A. J. (Sandy) Dawson is a member of the
Faculty of Education at

Simon Fraser University in Vancouver, Canada. He can be
reached electtonically through Bitnet as

userDaws@SFU.BITNET

Teachers Beginning to Think
in Logo
by Richard Austin

Logo is a popular computer language with elementary
teachers, because it is easy to write procedures which "draw"
designs on the monitor screen. For this reason, I include a
session on Logo in an inttoductory class about classroom
applications of computers. The amount of Logo covered is by
necessity only a small bit of the turtle graphics portion of the
language. An important point, made several times during the
presentation, is that it is possible to have several different
procedures that are correct; i.e., the results displayed on the
screen satisfy the assignment If teachers are aware that they
approach problems differently, they should be prepared to
accept alternate solutions from their students. Following a
presentation of about one and a half hours, the students then
work in the computer lab writing their own procedures to draw
four figures shown on the lab assignment sheet

The students in this class are mostly teachers with no
previous computer experience. The teaching assignments and
areas of interest of these students cover the entire range of
teaching positions. During the lab sessions, students are
encouraged to, and often do, work together in teams of two.

The lab assignment was to write procedures named
FLAG, FLAGS, MANYFLAGS, and CROSS, which would
produce the corresponding figures shown below:

FLAG FLAGS

p
D

~'!ANY FLAGS CROSS

u

(
I

March 1990 -----LOGO EXCHANGE---~

In evaluating the Jab work for the Logo exercise, I enter
the procedure name and simply look at the figure that is
displayed on the screen. If the figure looks like the one on the
assignment sheet, full credit is given. As the insttuctor I did
look at the listing of the procedures out of my own curiosity.
Having been given hints during the earlier class presentation,
most of the students wrote very similar procedures for the
FLAG,FLAGS,andMANYFLAGS. TheCROSSprocedure
however, caused students to think and be a bit more creative
than they had been in writing procedures for the first three
figures. I found it interesting to examine the several accept
able procedures for making the figure CROSS that I received
from these students.

Most students had procedures for SQUARE and FLAG
as follows in their workspace. (All of the work was done using
Apple Logo.)

TO SQUARE
REPEAT 4 [FORWARD 30 RIGHT 90]
END

TO FLAG
FORWARD 30
SQUARE
BACK 30
END

For those students who wrote a different procedure for
FLAG and used it in their CROSS procedure, I will provide
their listing for FLAG.

For all examples, I edited only the distance so that the
length of each square would be 30 turtle steps. This was not
part of the assignment, but will make the resulting figures the
same size and thus possibly easier to visualize the differences
in how the procedures were written.

I have identified fifteen procedures that are different.
Some are very much like others, but still reflect somewhat
different thinking. Some of the procedures were used by
several lab groups and some were unique. I was unable to
make any analysis or further evaluation of these procedures.
My interest was in the wide range of thinking reflected in the
way in which student teams approached this problem (for
many students, the CROSS procedure was a very real problem
for which they could see no immediate approach). These
students had only the bare minimum exposure to Logo before
beginning this exercise. All of the procedures listed here
received full credit as they produced the proper cross pattern
on the screen.

Example 1
TO CROSS
REPEAT 4

[SQUARE
RIGHT 90
FORWARD 30]

END

Example2
TO CROSS
REPEAT 4 [FLAG

FORWARD 30
RIGHT 90]

END

Example3
TO CROSS
SQUARE
LEFT 90
SQUARE
FORWARD 30
SQUARE
LEFT 180
SQUARE
LEFT 90
FORWARD 30
SQUARE
END

Example4
TO CROSS
SQUARE
RIGHT 90
FORWARD 30
SQUARE
RIGHT 90
FORWARD 30
SQUARE
RIGHT 90
FORWARD 30
SQUARE
END

ExampleS
TO CROSS
FORWARD 45
RIGHT 90
FORWARD 30
RIGHT 90
FORWARD 90
RIGHT 90

Page 21

FORWARD 30
RIGHT 90
FORWARD 30
RIGHT 90
FORWARD 60
LEFT 90
FORWARD 30
LEFT 90
FORWARD 90
LEFT 90
FORWARD 30
LEFT 90
FORWARD 30
LEFT 90
FORWARD 15
END

Example6
TO CROSS
LEFT 90
FORWARD 45
RIGHT 90
FORWARD 30
RIGHT 90
FORWARD 90
RIGHT 90
FORWARD 30
RIGHT 90
FORWARD 60
RIGHT 90
FORWARD 60
RIGHT 90
FORWARD 30
RIGHT 90
FORWARD 90
RIGHT 90
FORWARD 30
RIGHT 90
FORWARD 30
END

Example7
TO CROSS
SQUARE
REPEAT 4

END

[FORWARD 30
SQUARE
RIGHT 90]

Page22

ath \\ urlds - cuntinurd

ExampleS
TO CROSS
FORWARD 30
SQUARE
REPEAT 4
[FORWARD 30

SQUARE
RIGHT 90]

END

Example9
TO CROSS
REPEAT 4 [FLAG

RIGHT 90]
END

TO FLAG
FORWARD 30
SQUARE
END

Example 10
TO CROSS
SQUARE
RIGHT 90
FLAG
LEFT 90
SQUARE
FORWARD 30
LEFT 90
SQUARE
END

TO FLAG
FORWARD 60
REPEAT 3

[RIGHT 90
FORWARD 30]

LEFT 90
FORWARD 30
END

Example 11
TO CROSS
PENUP
LEFT 90
FORWARD 15
PENDOWN
RECTANGLE
PENUP
HOME

-----LOGO EXCHANGE----~ March 1990

FORWARD 15
PENDOWN
RECTANGLE
END

TO RECTANGLE
LEFT 90
FORWARD
LEFT 90
FORWARD
LEFT 90
FORWARD
LEFT 90
FORWARD
LEFT 90
FORWARD
END

Example 12
TO CROSS

45

30

30

30

45

REPEAT 2 [BLOCK
RIGHT 90]

FORWARD 30
RIGHT 90
FORWARD 30
RIGHT 90
END

TO BLOCK
FORWARD 60
RIGHT 90
FORWARD 30
RIGHT 90
FORWARD 90
RIGHT 90
FORWARD 30
RIGHT 90
FORWARD 60
END

Example 13
TO CROSS
REPEAT 4 [FOR

WARD 30
RIGHT 90]

LEFT 90
REPEAT 4 [CRY]
END

TO CRY
REPEAT 3
[FORWARD 30

RIGHT 90]
LEFT 180
END

Example 14
TO CROSS
SQUARE
FORWARD 30
SQUARE
LEFT 180
FORWARD 30
RIGHT 90
SQUARE
RIGHT 180
FORWARD 30
LEFT 90
SQUARE
RIGHT 180
SQUARE
END

Example 1S
TO CROSS
FLAG
RIGHT 180
FORWARD 30
RIGHT 180
FLAG
RIGHT 90
FORWARD 30
LEFT 90
FLAG
FORWARD 30
LEFT 90
FLAG
END

These procedures clearly illustrate that there are indeed
several ways to write equivalent procedures in the Logo
language. That the teachers solved the same problem by
writing the procedures above reflects this variability. These
procedures were collected from 10 different classes over a
four-year time interval.

Richard Austin is an assistant professor in the Cur
riculum and Instruction Department at the Univer
sity of Tennessee, Knoxville, working in the areas of
mathematics education and instructional comput
ing.

Richard Austin
301 Claxton Education Building

University of Tennessee
Knoxville, Tennessee 37996-3400

Maich 1990 ------LoGo ExcHANGE -----n~•· Page23

Creating SETX and SETY in
HyperCard
by Glen L. Bull and Gina L. Bull

In last month's column we showed you how to create a
HyperCard button called compass, and how to write Hyper
Card commands which would move the compass around the
screen much as Logo commands can be used to move the turtle
around the Logo screen. The button named "Compass"
looked like this.

IfyouhavenotaJreadycreatedthisbutton,anddon'tyetknow
how to make one, you will need to refer to the instructions in
last month's column. Once you have a button named "Com
pass" that looks like the one above, you can change its location
by typing commands such as the following in the Message
Box.

~~ommiiiii!ffiim~ii~iml!m!i~~iiimmgigii1!milllli:immiiiiiiiiiggiiiiiismm;g,;mmr:giimmmm;msi~

set the loc of card button compass to 50,100
ooOoO-OOOOO-NON-00000-00001-000000-ooooo-•••••-•••••-uuo-oouo-

If the message box is not showing, you can make it appear by
holding down the Command key (the one to the left of the
spacebar with a picture of a cloverleaf) and typing M. The
particular command shown above sets the compass button to
a position 50 pixels from the left edge of the screen and 100
pixels below the top of the screen.

In Logo it is not only possible to move the turtle around
the screen with turtle graphics commands, it is also possible to
determine the position of the turtle on the screen with com
mands such as XCOR and YCOR. In HyperCard you could
determine the position of the compass with a similar com
mand. Assume that the position of the compass is in the
middle of the screen, as shown below.

You could determine the exact location of the compass button
by typing the following in the Message Box.

put the loc of cBrd button compBss into msg box _____ ------.......... .

In this instance HyperCard might indicate that the coordinates
of the button were 256,171. r Cl!r~!Ei~",;;;;r~m'-'Jillir.i§g?~i!\llffi!iffii~~l

256,171
·········-··········· .. ········-······································

If you do not tell HyperCard where to put the location of the
compass button it assumes that you mean the Message Box, so
the command could also be written in the following way.

gommmi:iiiiiiimiiiiiiimmmmiimm::i::i:iiiiiiimmiiiimmiiimmm;;;;;m;;g;;;

put the 1 oc of card but ton compass

We will use the "loc" command in HyperCard to write
XCOR and YCOR commands very similar to the same com
mands in Logo. Some versions of Logo do not have XCOR
and YCOR commands that give the X andY coordinates of the
Turtle separately. However, almost all versions ofl..ogo have
a POS command that gives the X and Y coordinates of the
Turtle together, much as the "loc" command in HyperCard
gives the combined X and Y coordinates of the compass
button. In Logo the XCOR and YCOR commands can be
created using the POS command, if they are not already
available. We will explain how this is done in Logo first, and
then use the same logic to create similar commands in Hyper
Card.

In Logo the first position provided by the POS command
is the X coordinate and the second position is theY coordinate.
XCOR and YCOR commands can be created in Logo in the
following way (if they are not already available).

TO XCOR
OUTPUT FIRST POS
END

TO YCOR
OUTPUT LAST POS
END

Page24 -----LoGo ExcHANGE ----a~~· March 1990

Logo & Company -continued

In Logo these commands are written in the Logo editor. To get
to the equivalent of the Logo editor in HyperCard, go to the
Objects menu on the menu bar at the top of the screen, and
select the Stack Info option.

Do

l: i<~ld l n1·o.,
Card Info .. .
Bk d Info .. .

After you select Stack Info, a dialog box similar to the
following will appear.

stack Name:jln§unl

Where: Multimedia lab

Stack contains 3 cards.

(Scrip t... J ['1;;;(iiiiiiOiiiiiiK---:JJ

Click on the Script button of the Stack Info dialog box. The
Script editor should appear. If you copied the background of
the Home Card when you created your stack, you may fmd
there is already some text in your Stack script resembling that
shown in the box below. You should delete this text before
you go on to enter your own script. (If you do not want the
Stack script of the Home Card to be copied into future stacks,
you should be sure the "Copy Current Background" box is not
checked when you create new stacks.)

on c
choose browse tool
doMenu "Card Info ... "

end c

on b
choose browse tool
doMenu "Bkgnd Info ... "

end b

Hypertalk is the programming language that accompa
nies HyperCard. A program in Hypertalk is called a script,
just as a program in Logo is called a procedure. After you have
deleted the previous text in the Stack script (if any), type the
following in the Script editor. It will be your fJrSt Hypertalk
script.

Script of stack Demo

function xcor
return item 1 of the 1 oc ..,
of card button compass

end xcor

(OK J (Cancel)

Important note: the symbol ••--;• at the end of a line in
HyperCard indicates that the command is continued on the
next line. If there is not room for the command to fit on one
line, hold down the ''Option" key as you press return, and the
''...," symbol will automatically be generated.

After you have typed the program you can click "OK" in
the Script editor dialog box. Now you are ready to use the new
XCOR command that you have created in HyperCard. Type
the following to try it out

HyperCard should put the X coordinate of the compass button
in the Message Box after you press the Return key. (Be sure
to include the set of parentheses shown, with no space between
the parentheses and xcor.) Let's compare the XCOR com
mand we have written in Hypertalk with the XCOR command
in Logo. Of course, there is the obvious difference that you
must include a set of parentheses after the XCOR command in
HyperCard in order for it to work.

,...

!
l

March 1990 -----L 0 G 0 E XC H A. N G E ----"'11~~- Page25

There are more subtle differences. such as the fact that
procedures in Logo tend to be mostly written in upper case,
while scripts in Hypertalk tend to be written mostly in lower
case. However. those are esthetic differences. and the pro
grams in each language will still run even if you violate
conventions regarding case.

Logo Version
TO XCOR
OUTPUT FIRST POS
END

Hypertalk Version
function xcor

return item 1 of the loc ~
of card button compass

end xcor

Both programs in this instance are actually functions. A
function is a program that returns some information to another
program. In Logo the OUTPUT command is used to signal
that this information is to be provided. The Hypertalk equiva
lent of OUTPUT is return. Although there are some differ
ences between the two functions. it is also clear that there are
some correspondences between Logo and Hypertalk. and that
the form of the two functions is somewhat similar.

If the HypertalkXCOR function worked properly, return
to the Stack script and add the YCOR function. It is almost
identical to the XCOR function:

function ycor
return item 2 of the loc ~
of card button compass

end xcor

Now that we have equivalents of the XCOR and YCOR
functions in Logo,let' s create commands that are the equiva
lent of SETX and SETY. XCOR and YCOR tell where the
turtle is (or the compass button in the case of our HyperCard
stack) while SETX and SETY will set the position of the turtle
or compass to a specific X or Y coordinate. We wrote the
Hypertalk equivalent of X COR and YCOR frrst because they
are needed to create SETX and SETY.

The following procedure (or handler, as procedures are
called in Hypertalk) uses YCOR in the SETX command. It
says, "Set the location of card button 'Compass' to the value
of an X input and the current Y coordinate." Type the
following procedure into the Stack script.

on setx xpoint
set the loc of card button ~
compass to xpoint,ycor()

end setx

Once you have entered the procedure, try it out by typing the
following into the Message Box. and pressing Return.
Did the compass button move to the left side of the screen? If r om~~;;;;r.;m;;::;;;m!ll,.,i!i!!rn;m§:!!§!!i!i!!!iiil!!!§iii'iiil

setx 50
·············-···-················

the SETX procedure worked, you are ready to add a SETY
command. Add this procedure to the Stack script

on sety ypoint
set the loc of card button ,
compass to xcor(),ypoint

end sety

SETX and SETY allow you to set the position of the compass
button in HyperCard, just as you can set the position of the
Turtle with comparable SETX and SETY commands in Logo.
We created SETX and SETY so you could compare the
anatomy of Hypertalk scripts with Logo procedures. There
are enough similarities that with a little practice you should be
able to apply all of the programming expertise that you
developed in Logo to Hypertalk as well.

SETX and SETY are absolute commands; they send the
turtle to a fixed point on the screen. Most of the time Logo
programmers use relative commands such asFORW ARD and
BACK. These commands move the turtle to another point
relative to its cmrent position on the screen. We can create
some relative commands in HyperCard to complement the
SETX and SETY commands that we have just created. The
following Hypertalk handler will allow us to move the com
pass button up by a certain amount.

on up distance
set the loc of card button ,
compass to xcor(),ycor() -distance

end up

Page26 -----LoGO EXCHANGE ----.n~~· March 1990

Logo & ('ompan~·- nmtinued

After you add the UP procedure to the Stack script, type the
following in the Message Box: r 0 mmmm;;;;;;;;;;;;;;;;;;;;;;;:!E!i§ffii!ii'-6i!;r.mm:;mmnml

up 30
··-·····························-······-···

Did the compass button move up by 30 steps? You may want
to add a DOWN procedure to the stack script as well.

on down distance
set the lac of card button ~
compass to xcor(),ycor() +distance

end down

Now that you have seen two examples that move the compass
up and down, can you develop relative commands that move
the compass button from side to side in HyperCard?

In Logo there is only one place to create new procedures,
in a procedure editor. This is roughly the equivalent of the
Stack script in HyperCard. However, in HyperCard there are
several places in which procedures can be created. The script
of the HyperCard stack is one; scripts of HyperCard buttons
are another. In last month's column we created a button called
"Center" and added a command to its script that centers the
compass button on the screen.

(Center)

Let's make a button that will move the compass button up. Go
to the Objects option on the menu bar at the top of the screen,
and select the New Button option. Then double-click on the
New Button that you created to go to the Button Info dialog
box. Follow steps similar to the ones that you used to create
the "Center" button last month to create an "Up" button:

• TypeUP(inplaceof"NewButton'')intheButtonNamebox
• Click the "Autohilite" box to select this feature
• Click the Script button to go to the Script Editor of the UP
button

After you are in the Script editor of the UP button, type

the following script:

on mouseUp
up 30

end mouseUp

Then click the OK button of the Script editor. After you return
to the HyperCard screen, select the Browse tool (the one that
looks like a hand) from the Tools palette. Place the fmger of
the Browse tool in the middle of the UP button, and click the
mouse button once. Did the compass button move up by 30
steps?

Congrabllations! You have just created a "sticky button"
similar to ones in the experimental version of Atari Logo that
we described last month. When the Button tool is selected on
the tools palette, you can drag the UP button around the screen
and place it anywhere you want When the Browse tool is
selected, you can use the fmger of the browse hand to press the
UP button-which, in turn, will cause the compass to move up
the HyperCard screen by 30 steps.

Now that you have created an UP button, you may wish
to develop others-possibly a DOWN button, a LEFT button,
and a RIGHT button. You have created the beginnings of an
"Instant Logo" in HyperCard. For now you may want to fmd
a young child who can try out these new commands, but
evenblally you may want to add more commands to create a
HyperCard "microworld."

Summary
In last month's column on parallels between Logo and

HyperCard, we showed you how to do the following:

• Start the HyperCard program
• Create a new stack
• Create HyperCard buttons
• Enter commands in the Message Box

In this month's column we showed you some additional
programming features of HyperCard, including the follow
ing:

• How to enter procedures in the Stack script
• How to write a Hypertalk procedure
• How to write a Hypertalk function
• How to use inputs in Hypertalk procedures

We hope that this has encouraged you to investigate Hyper
Card on the Macintosh. HyperCard has also inspired similar
programs on other computers, such as LinkWay for the IBM,
and Hyper Screen, Hyper Studio, and Tutor Tech for the Apple

March 1990 -----L 0 G 0 EXCHANGE ----ot~I)Jv~· Page27

n computers. We hope to explore some of these programs in
future columns.

Last month we recommended the HyperCard Hand
book by Danny Goodman. The HyperCard Handbook is a
good beginning introduction and reference manual for Hyper
card. It is possible to do a great deal in HyperCard without
doing any programming at all. If you would like to write more
Hypertalk scripts. HyperTalk Programming by Dan Shafer.
published by Hayden Books. is a good introduction to pro
gramming in Hypertalk.

Glen Bull is a member of the instructional technol
ogy faculty in the Curry School of Education at the
University of Virginia Gina Bull is a programmer
analyst for the University of Virginia Department of
Computer Science. By day she works in a Unix
environment; by night, in a Logo environment.

Glen and Gina Bull
Curry School of Education

Ruffner Hall
University of Virginia

Charlottesville. VA 22903

BITNET addresses:
Glen: LB2B@ VIRGINIA. Gina: RLBOP@VIRGINIA.

How to add spice
to your lessons

TO ADD.SPICE
Buy Logo Innovations.
Pick one of 18 projects.
Use it with your class today.
Show others the neat things you

can do with Logo.
END

Logo Innovations is a spice that can perk up your
classroom lessons. While other Terrapin products
focus on one subject in depth, Logo Innovations is
the seasoning that will complement any curriculum.

The design at left was generated
using the Mandala activity.
This mandala is a random
symmetrical design, a perfect
Logo application.

Choose from 18 Logo Innovations activities

Logo Miniature Golf-teach estimation and strategy
Astronomy--create constellations using Logo
Logo Weather Station--connect your computer to

the outside world and monitor weather conditions
Proportions-practice ratios using triangles
Little Turtle Goes to a Party-introduce young

learners to directions through a delightful story
Vectors-use simple Logo commands to add vectors

Plus 12 more projects to explore!

The double-sided disk contains 19 ready-to-use
programs, and the 32-page resource guide includes
three off-computer activities.

See what other teachers are doing with Logo
order your copy today!

Terrapin Software
400 Riverside Street

(207) 878-8200
Portland, ME 04103

Name. ________________________________ _

Address-------------------
City ________ State __ Zip ___ _

_ I am enclosing a check to Terrapin for $14.95.

Please check the version of Logo you have:

__ Terrapin Logo for the Apple __ Logo PLUS

!!""

Page28 -----LOGO EXCHANGE ----.n~~· March 1990

Stages of Learning Programming
by Douglas H. Clements

Do students pass through recognizable stages as they
learn to program? Yes. As with knowing what's hard for
students in learning Logo, knowing about stages of learning is
invaluable teaching effectively with Logo.

''First steps" in learning Logo commands
A three-step model of children's initial learning of Logo

commands has received research support (Fein, Scholnick,
Campbell, Schwartz, & Frank, 1988).

Step 1. A good deal of what children learn involves
differentiation. At ftrst, the child has a single global concept,
"turtle," defined in terms of undifferentiated movement.
Children begin to differentiate types of commands-FOR
WARD/BACK vs. turns. However, they. prefer and more
easily learn about FORWARD and BACK. This is probably
because turn commands only produce a rotation of the turtle,
a movement that must be seen as it is happening. In addition,
turn commands can be confusing because of many children's
lack of mastery of right and left and perspective-taking abili
ties.

Children then differentiate commands within each type.
Forward is favored over backward, probably because children
usually move forward themselves and because the turtle's
nose favors a forward trajectory. Because backward is rarely
used, children are almost forced to differentiate between the
two turn commands. Right is favored over left

Step 2. At ftrst, children use just four command "strings":
FORWARD, RIGHT, FORWARD-then-RIGHT, and
RIGHT-then-FORWARD. At step 2, children synthesize
these fragments into a greater whole. For example, they figure
out that any right move can be reversed by an appropriate
move to the left They understand why FORWARD then
RIGHT is not the same as RIGHT then FORWARD. This
allows them to explore all combinations of the commands.

Children can now produce the designs they wish. They
make fewer mistakes in syntax and can debug more efft
ciently.

Step 3. Children build up more complex relationships.
For example, they discover the relations between rotations
and distances. Back is equivalent to a 180° turn followed by
a forward. So there are as many as four ways to reach the same
target and many more ways to draw the same figure.

Thus, three sets of powerful ideas are inherent in the
semantics and syntax of primitive Logo commands: ideas
about space, ideas about syntax, and ideas about relations
between these two. Spatial knowledge is discovered in the
ftrSt step. Simple relations and syntax emerge in the second.
Complex relationships, combinatorial flexibility, and integra
tion appear in the third. If we teachers make this knowledge
explicit and help children forge links to other know ledge, the
benefits of such learning are clear.

This work builds upon previous research on young
children's spatial concepts. Using a button box (FORWARD,
RIGHT, LEFT) more than a decade ago, Gregg (1978) iden
tified five stages in learning to direct a turtle robot (I)
comprehension that the buttons have some effect on the turtle;
(II) differentiation of the FORWARD button from the other
two; (Ill) recognition that the turn buttons have separate
functions; (IV) recognition that the turn buttons make the
turtle rotate on its axis; and (V) full understanding. Gregg
hypothesized that 4- and 5-year-old children initially were
unable to map the appropriate buttons onto the appropriate
turtle part and so could not select the correct button.

Another researcher focused on the concepts of right and
left (Roberts, 1984). At Ievell, children can reliably identify
their own right and left sides, but cannot use the distinction for
specifying directions to the turtle at all. Level2 children adopt
an egocentric frame of reference. When the direction to turn
the turtle corresponded to their own left or right side (e.g., 0 or
180 degrees), they choose that side as the direction to turn the
turtle; otherwise, they perform at chance level (90 or 270
degrees). At level 3, children make correct judgments for 90
and 270 degrees (performance at this level was uncommon).
Level 4 children make correct judgments at all orientations.
Roberts suggested that children at higher levels perform
imagined mental rotations of themselves. We have all seen
children twist their bodies into alignment with the turtle in an
attempt to ftgure out a turn! That is, they seem to ''project"
themselves into the place of the turtle. (More about this issue,
include notes on teaching, is provided in the previous column,
"What's hard about beginning with Logo? The research.")

These results led Roberts (1984) to conclude that chil
dren not at level4 would be seriously limited in their ability
to write Logo programs due to their inability to understand
how the turn commands operate at all possible orientations.
This provides additional evidence of the importance of pro
viding children at lower levels with special support programs,
such as INSTANT, SINGLEKEY, and TEACH, which ame
liorate such difficulties while permitting the construction of
complex programs (Clements, 1983-84; Clements & Battista,
in press; Clements & Nastasi, in press).

--.
March 1990 -----LOGO EXCHANGE---~~ Page29

Stages in programming
Other researchers have investigated stages in learning

about programming that go beyond the "commands" level.
Kull (1986) observed three steps in frrst graders' program
ming ability. At the first step, children practiced in immediate
mode, took notes, then copied the code from the notebook
onto the screen in the editor, often including the errors. They
then ran the procedures, noted the bugs, and learned how to
edit They soon wrote down only the moves that wmked:
"What are you doing?" "I'm writing down the moves that will
help it make theJ." "What about the moves that don 'thelp it?"
"I just don't write those down."

At the second step, children recognized that this process
was cumbersome, and began planning several moves ahead,
writing them down, then checking them for accuracy in
immediate mode, and fmally adding them to a procedure. At
the third step, children began writing whole procedures at
once (around March for the majority). Debugging was easy
because they had a strong sense of the sequence of instructions
used to control the turtle. Kull noted that the time spent
drawing and taking notes for an important developmental step
in learning to program effectively. Many teachers attest to the
benefit of students keeping Logo notebooks or journals.

Workingwitholderstudents,Howe(l980)reportedthree
stagesofleaming Logo programming. In the product oriented
stage, student attempted to produce effects without concern
for the method used. Style-conscious students made an effort
to program in a correct style (as defined by worksheets the
researcher provided). At the highest stage, creative problem
solving, Logo was used for analytic activities, including the
adaptation of other procedures and the use of plans for solving
problems. Pea and Kurland (1984) note that it is not clear that
one could reliably identify the stage a student was in, and that
the second stage could be an artifact of the teaching method
ology used.

Instead, these researchers identified four levels of com
puter programming ability (Pea & Kurland, 1984). At level I
is the program user, who can execute already written pro
grams. Code generators at level IT know the syntax and
semantics of the most common commands of a language.
They can read programs and understand what each line
accomplishes, debug syntax errors, and write simple pro
grams(usuallywithlittlepre-planning). Theleveliiiprogram
generator thinks in terms of higher level units and knows
sequences of commands that accomplish specific goals
("templates"). At level IV, the software developer writes
complex programs that take full advantage of the capabilities
of the computer and are intended to be used by others.

Linking Logo with problem solving
Noss (1984) distinguished among three learning modes

that lead from explorations to problem solving. These modes
are not developmental stages, in that children switch readily
from one to the other. When introduced to a new idea, children
need time to experiment and master the idea-to make sense
of it. They often push the idea to extremes. In the second
mode, exploring,children make connections between the new
idea and established ones by inCOiporating the new ideas into
their procedw-es. Exploring activities utilize programming
tools to extend the power of the language. The third learning
mode, solving problems, involves less experimentation and
more goal-directed behavior. Noss demonstrated that signifi
cant learning takes place in each mode. This framework
seems to be a useful way to see the value of the exploratory
activity of the first two modes while balancing them with the
more reflective problem solving of the third.

Computer programming does seem ideal for encouraging
problem solving. Linn (1985) cautions, however, that re
search shows that much learning is domain specific. She
describesachainofcognitiveconsequencesthatsuggestshow
links between problem solving in programming and problem
solving in other disciplines may be forged. The links in the
chain are as follows:

Learn the language features. These are the primitives
(e.g., FORWARD BACK IF). Too many courses and text
books spend most of their time teaching at this level (only).
Logo, with it's small but extensible set of features, is ideal for
quickly mastering fundamental language features and using
them for problem solving.

Learn to design programs to solve problems. This has
two components. The fJI"St is to develop a repertoire of
templates, stereotypic patterns of code. Research shows us
that experts organize their knowledge of programming into
templates. (Templates were discussed in the previous col
umn.) The second component is to develop procedural skills.
These skills are used to combine templates or language
features to solve problems. They include planning a solution,
testing the plan, and reformulating the plan until it succeeds.
Again, research has shown that experts spend a great deal of
time planning solutions. Novices tend to "jump right in" and
begin to write code. These procedural skills thus can and
should be taught

Learn problem-solving skills applicable to other formal
systems (e.g., Newtonian mechanics). These include general
ized templates (e.g., a general sorting routine), and general
ized problem-solving strategies (e.g., the metacomponents

Page30 -----L 0 G 0 EXCHANGE -----liDI-~· March 1990

discussed in several previous columns applied to a variety of
problems). Students at this level would see the connections
between testing a program to be sure it can manage possible
division-by-zero cases and testing the solution to a measure
ment problem in algebra to check that the answer does not
require negative quantities.

Research indicated that teachers of successful high
school students explicitly encouraged students to master each
link in the chain. They discussed templates and problem
solving strategies (e.g., debugging). They insisted that stu
dents make plans and they discussed errors and misunder
standings.

One even has to teach the "style" of programming. Next
month's "extra for experts" column will be dedicated to this
neglected aspect of programming.

Final Words
These attempts to delineate stages or learning modes

serve as useful frameworks and provide us with insights into
children • s learning. However. they are sensitive to the educa
tional context For example, Kull' s steps might help a primary
grade teacher to construct reasonable expectations and to pro
vide appropriate assistance. However, if support programs
which encourage immediate use of procedurality are utilized
(Clements, 1983-84; Clements & Nastasi, in press), children
would not necessarily follow these steps. In addition, this
body of work is often based on anecdotal observation and
intuition. More work, involving increased specificity and
assessment reliability, is needed if developmental stages are
to be identified and validated. Teacher-researchers might
make a substantial contribution to this effort

References
Clements, D. H. (1983-84). Supporting young children's

Logo programming. The Computing Teacher, 11(5), 24-
30.

Clements, D. H., & Battista, M. T. (in press). Logo-based
geometry curriculum: K-6. Morristown, NJ: Silver Bur
dett&Ginn.

Clements, D. H., & Nastasi, B. K. (in press). Computers and
early childhood education. InT. Kratochwill, S. Elliott, &
M. Gettinger (Eds.), Advances in school psychology:
Preschool and early childhood treatment directions.
Hillsdale, NJ: Lawrence Erlbaum.

Fein, G. G., Scholnick, E. K., Campbell, P. F., Schwartz, S. S.,
& Frank, R. (1988). Computing space: A conceptual and
developmental analysis of LOGO. In G. Forman & P. B.
Pufall (Ed.), Constructivism in the computer age (pp.
105-127). Hillsdale, NJ: Lawrence Erlbaum.

Gregg, L. W. (1978). Spatial concepts, spatial names, and the
development of exocentric representations. In R. S.
Siegler (Ed.), Children's thinking: What develops (pp.
275-299). New York: John Wiley & Sons.

Howe, J. A.M. (1980). Developmental stages in learning to
program. In F. Klix & J. Hoffmann (Ed.), Cognition and
memory: Interdisciplinary research of human memory
activities. Amsterdam, NY: North-Holland.

Kull,J.A.(1986).LearningandLogo.InP.F.Campbell&G.
G. Fein (Ed.), Young children and microcomputers (pp.
103-130). Englewood Cliffs, NJ: Prentice-Hall.

Linn, M. C. (1985). The cognitive consequences of program
ming instruction in classrooms. Educational Researcher,
14(5), 14-29.

Noss, R. (1984). Children learning Logo programming. In
terim report No.2 of the ChilternLogo Project. Hatfield,
England: Advisory Unit for Computer Based Education.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive and
educational benefits of teaching children programming:
A critical look. New Ideas in Psychology, 2, 137-168.

Roberts, R. J., Jr. (1984). Young children's spatial frames of
reference in simple computer graphics programming.
Unpublished doctoral dissertation, University of Vir
ginia.

Douglas H. Clements is an associate professor at the
State University of New York at Buffalo. He is co
author of the Logo-based Geometry Curriculum, to
be published by Silver, Burdett, & Ginn. His most
recent book, Computers in Elementary Mathematics
Education was published by Prentice-Hall in 1989.
His recent research has dealt with the effects of
certain Logo environments on children's metacogni
tive ability, creativity, and geometric conceptualiza
tions.

Douglas H. Clements
State University of New York at Buffalo
Department of Learning and Instruction

593 Baldy Hall
Buffalo, NY 142(,().

CIS: 76136,2027 BITNET: INSDHC@UBVMS

March 1990 -----LoGo ExcHANGE----D-- Page 31

Edited by Dennis Harper
University of the Virgin Islands
St. Thomas, USVI 00802

Logo Exchange Continental Editors
Africa Asia Australia Europe
Fatimata Seye Sylla Marie Tada
UNESCO/BREDA St. Mary's Int School
BP 3311, Dakar 6-19, Seta 1-chome

Jeff Richardson
SchoolofEducation
GIAE

Harry Pinxteren
Logo Centtum Nederland
P.O. Box 1408

Latin America
Jose Valente
NIED
UNICAMP
13082 Campinas
Sao Paulo, Brazil

Senegal, West Africa Setagaya-ku
Tokyo 158, Japan

Switchback Road
Churchill 3842
Australia

BK Nijmegen 6501
Netherlands

This month's column comes to us through a frequent
Logo Exchange source in Finland, Hannu Korhonen of the
University ofJyvaskyUi. He happened to be in China recently,
and despite the turmoil, had the opportunity to visit the Uni
versity of Beijing and discuss Chinese and Finnish Logo ex
periences. Here is his exclusive report

In Beijing, an electronic turtle obeys the command

CHONGFU 4 (QIAN 60 YOU 90]

as kindly as her American cousin in Eugene, Oregon, obeys
the command

REPEAT 4 [FORWARD 60 RIGHT 90].

A person who understands Logo need not understand
very much Chinese in order to understand the meaning of
Chinese Wrtle graphics commands QIAN, HOU, ZUO and
YOU. One can conclude the meanings from

and the corresponding program

TO YE
Z ~~ 9 10 H 10 Y 90
61 10 H 10 Z 45

END

TO ZHI
Q 15 YE Gl 15 YE
61 10 H 40

END

TO CONG
Z 60 CHF 7 fZHI Y 30l
z 80

END

TO SHU
CBNB.H 60 61 60

END

ThenamesoftheproceduresYE,ZHI,CONG,andSHUmean
a leaf, a branch, a bunch and a tree.

A basic Logo textbook in the school of the Beijing
University is Qing-shaonian jisuanji Logo yuyan (Logo
computer language for the youth) by Mr. Zhang Wan Zeng
and his colleague Ms. Chen Xu Lin. The book consists of a
multitude of examples of Wrtle graphics. However, there are
some more complicated procedures; such as the map of China
and the Gate of Heavenly Peace or Tian-an-men.

0

Page 32 -----LOGO EXCHANGE ____ .,.. March 1990

Most of the programs are made using merely the com
mands for proceeding and turning, subprogram calls, and a
little recursion. Some of the procedures may thus be consid
erably long for elementary exercises, more than 100 com
mands with parameters. But the results of the programs are
amazing and admirable.

Logo has been used in Beijing since 1984. The children
work with the computer for a lesson a week starting in the
fourth grade. The themes are mostly graphical. The objec
tives are learning to use a computer and developing algo
rithmic thinking.

Another, more advanced Logo book used in the school is
Zhongxiaoxue Logo yuyan jiaocheng (A Logo course for
secondary schools). In this book the topics are progressing
quite rapidly via the usual flowers, stars, and spirals to more
advanced recursion structures, the variants of a binary tree,
and such curves as C- and dragon curves.

In the most advanced sections there are elegant flower
compositions, computer calligraphy (Happy New Year),

and adorable animal shapes.

The choice of themes and the grandeur of the modifications
demonstrate enviable insight and diligence. Furthermore,
they show how esthetics and programming can shake hands
with each other.

The Apple MIT-Logo has been extended in the electron
ics factory of Beijing University by Chinese characters and
commands in pinyin Chinese. Chinese characters have been
realized in assembler language code because of the speed
considerations. Furthermore, there is a utility program for
immediate changing of colors in the same way as in many
graphics programs. A third application allows for the possi
bility of getting digitized video pictures processed with Logo,
which the Chinese feel is an essential step toward advancing
Logo into a multiusable language.

