
Journal of the ISTE Special Interest Group for Logo-Using Educators 

April1990 

EXTRA 
F 

- ~RTS 

w itation 
::::> 

Volume 8 Number 8 

DeChirico 

Yutz kin 

International Society for Technology in Education 



ef•fec•tive\i-'fek-tiv\adj (14c) 

1 a : producing a decided, decisive, or 
desired effect b : IMPRESSIVE, 
STRIKING 

2 : ready for service or action 

Computer-Integrated Instruction: 
Effective Inservice 

Dave Moursund's comprehensive series on inservice 
training for computer using educators has grown. 
Effective lnservicefor Secondary School Mathematics 
Teachers and Elementary School Teachers are joined 
by texts for Secondary School Science Teachers and 
Secondary School Social Studies Teachers. 

Based on a National Science Foundation project, 
these volumes bring you the latest research on effective 

training. Each work contains specific activities and 
background readings that enable you to hold inservices 
that result in positive, durable change at the classroom 
level. 

If you design or run computer-oriented inservices, 
Effective lnservicefor Integrating Computer-As-Tool 
into the Curriculum will help you develop a sound 
program through theory and practice. Sample forms 
for needs assessment and formative and summative 
evaluations are included. 

Each of the five volumes comes in a three ring binder 
that includes both hard copy and a Macintosh disk of 
the printed materials. Individual Math, Science, Social 
Studies, and Elementary School volumes are $40 each 
($3.70 shipping per copy) . Computer-As-Tool is $25 
($3.70 shipping per copy) . The complete set of five is 
available for the discounted price of $150 ($7 .50 
shipping per set ). 

ISTE, University of Oregon, 1787 Agate St., 
Eugene, OR 97403-9905; ph.503/346-4414. 

We've polished up a proven favorite! 

Apple Works for Educators by Linda , \,\\ . \ ·\ \ 
Rathje really shines. The new edition ~" '\. ~ \ \ \ \\ \ 
has been expanded to include sections ~ :: 

for: ~"'.\_1 
• mail merge -~~~" ~:. 
• integration activities 

• a gftwlossary, an
1
.d . 0~ .::: 

• so are app 1cat1ons. ......_~ _ 

Each section provides step-by-step ---::: ~ 
instructions. Beginning and intermediat, - ~ 
AppleWorks® users learn word process- -=: : 
ing, database and spreadsheet manage - : 
ment, and printer options. - .i_ ---- . Your copy includes a data disk of ____ ~ 
working examples. Add AppleWorks for __..- 3: 
Educators to your classroom and watch / + 
your students shine. ;;!; .i.. 

Single copy price: $22.95 
please add $3.70 shipping A /; 

A 

WORKBOOK 

// 
/STE, 1787 Agate St., Eugene, OR97403; .1......:-~-:--,------,----.--, -\ - \ -, _\__,~\ ~ 
ph. 503/346-4414 



Volume 8 Number 8 Journal of the ISTE Special Interest Group for Logo-Using Educators April1990 

Founding Editor 
Tom Lough 

Editor-In-Cblef 
Sharon Yoder 

International Editor 
Dennis Hatper 

International Field Editors 
Jeff Richardson 
MarieTada 
Harry Pinxtenm 
Fatimata Seye Sylla 
Jose Armando Valente 
Hillel Weintraub 

Contributing Editors 
Eadie Adamson 
Gina Bull 
Glen Bull 
Doug Cements 
Sandy Dawson 
Dorothy Fitch 
Judi Harris 

SIGLogo Board of Directors 
Gary Stager, President 
Lora Friedman, Vice-President 
Beverly and Lee Cwmingham, Communications 
Frank Mauhews, Treasurer 

Publisher 
International Society for Technology in Education 
Dave Moursund, Executive Officer 
Anita Best, Managing Editor 
Talbot Bielefeldt, Associate Editor 
Mark Homey, SIG Coordinator 
Lynda Ferguson, Advertising Coordinator 
Ian Byingtoo, Productioo 

Advertising space in each issue of Logo Excharr.ge is limited. 
Pleasecontac:ttheAdvertisingMgr.foravailabilityanddetails. 

Logo Exchange is the journal of the International Society for 
Technology in Educatioo Special Interest Group for Logo
using Educators (SIGLogo), published monthly September 
through May by IS1E, University of Oregoo, 1787 Agate 
Street, Eugene, OR 97403-9905, USA; 503(346-4414. This 
publicatioo was produced using Aldus PageMaur®. 

POS'IMASTER: Send address changes to Logo Exchange, 
U of 0, 17fJT Agate St., Eugene, OR 97403. Second-class 
postage paid at Eugene OR. USPS 1#000-554. 

Contents 

From the Editor-So, what is a "Logo Expert"? 
Sharon Yoder 

Monthly Musings- Re: Pete and Curses 
Tom Lough 

Logo Ideas-Who's the Expert? Levels of Expertise 
Eadie Adamson 

Beginner's Corner-April Fools! 
Dorothy Fitch 

Implementing Powerful Ideas-the Case for RUN 
Rina Zazkis and Uri Leron 

Logo LinX-Reach Out and Touch Logo 
Judi Harris 

Math Worlds-The Case of the Babylonian Turtle: 
A Logo Mystery 
Jim King 
Sandy Dawson, editor 

Three-Dimensional Logo 
Horacia C. Reggini 

Logo & Company-Building a Turtle in HyperCard: 
"Mock Turtle" 
Glen Bull, Gina Bull 

Global Logo Comments-Notes From Around the World 
Dennis Harper, editor 

2 

3 

4 

7 

11 

15 

18 

21 

27 

31 

r 
f 
: 
I 



I 
I i 

. I 

----.----. -----~·--~~-----

Page2 -----LOGO EXCHANGE----~ Apri11990 

So, what is a "Logo Expert"? 

The theme of this issue of the Logo Exchange is "Extra 
for Experts." While it may seem obvious that our intention 
is to provide some "advanced" material for our more sophis
ticated readers, the question still remains. Do we really know 
what we mean when we say "Oh, she's the Logo expert 
around here!" 

It seems to me that there are seveml possible interpreta
tions for the phrase "Logo Expert." We might mean the 
person who is a master of the Logo programming language. 
Perhaps you've met such a person. No matter what your 
question about the Logo language, these people always seem 
to have the answer. They know all of the seldom-used 
commands and subtle eccentricities of your favorite version 
of Logo. Often these experts are knowledgeable about many 
versions of Logo. "Oh," they comment, "in Logo Writer you 
use OR, but in Logo PLUS you use ANY OF." It's amazing 
the details these experts carry in their heads. 

Another category of Logo Expert that we value is the 
talented debugger. This is the person you fmd when your 
program simply won't run correctly. These people take one 
look at yomprocedures and often immediately see the source 
of your difficulties. If they don 'thave an instant answer, then 
they seem to know exactly where to look or how to locate a 
solution foryomproblem. These folks have a genuine gift for 
problem solving in the Logo environment 

ButbeingaLogoExpertcanmeanmorethanjusthaving 
skill as a programmer. We often think of the person with a 
broad knowledge of the Logo philosophy as being a Logo 
Expert. Such experts may not be masterful programmers, but 
they have a deep understanding of what is meant by the "Logo 
environment" and know how to develop such environments 
in the classroom. These are the teachers we love to watch 
work; these are the classrooms rich in discovery learning in 
the fullest of Logo traditions. 

The Logo Exchange itself is full of columns and articles 
by a variety of Logo Experts. If you read these pages 
regularly, then you know that Tom Lough is an expert at 
fmding Logo in all aspects of life, while Eadie Adamson has 
a real gift for challenging her students to learn more Logo in 
the midst of fascinating projects. This year, Dorothy Fitch 
has been our expert at providing ideas for beginners. Doug 
Clements is om expert on research, while Dennis Harper is an 
expert on the uses of Logo world-wide. Sandy Dawson 
brings us articles from a variety of Logo-and-math experts, 
while Judi Harris shares her special talents with language, 

often being our Logo-and-language-arts expert. This year 
Glen and Gina Bull have focused their expertise on Logo 
connections and Logo-like ideas. Each of these people shares 
a bit of his or her expertise with us all each month. 

In thinking about this idea of experts, I am reminded of a 
conversation that occurred nearly 10 years ago. I was just 
beginning to use a computer in my classroom and was being 
called an "expert" by colleagues and administrators. I cer
tainly dido 't consider myself an expert at all. I expressed my 
reservations to my friend. whose worlc in the area of computer 
education I had admired for many years. He responded by 
reminding me that I knew more about computing than anyone 
else in my district and so was indeed the expert as far as they 
were concerned. That reassurance by someone I respected 
gave me the courage to go back to my district and eventually 
build a Logo-rich K - 12 computer education program of 
which I could be proud 

So, if you are being called .. Logo Expert" by your 
colleagues, take it as a compliment. Examine your knowledge 
carefully. In what areas are you really an expert? Have 
confidence in yourself. Continue to learn and grow in your 
own special area. Broaden your horizons whenever your can. 
And, most importantly, share your expertise with your col
leagues. 

Sharon Yoder 
IS'IE/SIGLogo 

1787 Agate Street 
Eugene, OR 97403 

Ph: 346-4414 
CIS: 73007,1645 BI1NET: YODER@OREGON 



April1990 -----L 0 G 0 EXCHANGE ---..-.o~DI-- Page3 

Re: Pete and Curses 
by Tom Lough 

My six-year-<>ld told this story at the dinner table re
cently. 

"There once was a boy named Pete and his brother, 
Repete. They were walking down theroadandPeteranaway. 
Who was left?" 

''Repete." 
"There once was a boy named Pete and •.. " 

After a couple of "repete-titions" of this, I managed to 
pull a Control-S (or Apple-S) and tum his attention to the 
matter of dinner. But this little story gave me some, er, food 
for thought. In the March Musing, I commented on some 
different ways to look at the REPEAT command. My son's 
story prodded me to continue. Of course, my first thought 
was something like the following. 

TO REPETE 
PRINT [There once was a boy named Pete and 

his brother, Repete.] 
PRINT [They were walking down the road and 

Pete ran away. ) 
PRINT [ Who was left?) 
REPETE 
END 

I am always on the lookout for effective ways to help Logo 
learners make the transition from repetition to recursion, and 
to be able to tell the difference between the two processes. 
Unfortunately, this distinction is often not very clear. 

A typical learning sequence goes from REPEAT into 
some form of tail recursion. (Someone might ask, "How can 
I get the tmtle to keep doing this forever?'') 

TO MOVEIT.l 
REPEAT 100 [FORWARD 5 
RIGHT 5) 
END 

TO MOVEIT.2 
FORWARD 5 
RIGHT 5 
MOVEIT.2 
END 

Sometimes learners will stumble upon a clue that there 
is a little more to recursion than simple repetition. 

TO SPIRAL.! :SIZE 
IF :SIZE < 10 [STOP) 
FORWARD :SIZE 
RIGHT 90 
SPIRAL.l :SIZE - 10 
END 

TO SPIRAL.2 :SIZE 
IF :SIZE < 10 [STOP] 
SPIRAL.2 :SIZE - 10 
FORWARD :SIZE 
RIGHT 90 
END 

How can we help learners construct a mental picture of 
what is going on? There are several suggestions in the many 

recursion articles that have appeared both in the LX and in The 
Computing Teacher. But I feel we need descriptions that are 
based on more ordinary experiences. Here are a couple for 
consideration, based on activities that many perform in an oth
erwise unremarkable manner. 

1. When you are reading a difficult book and you come upon 
an unfamiliar word, you put a bookmark where you are 
reading and tum to another section to read about the unfamil
iar word. During that reading, you might come upon a second 
unfamiliar word, put a bookmark there, and tum to yet another 
section ... Sooner or later, you find something you understand 
and go back to your most recent bookmark to resume. When 
you finish that, you go to the next most recent bookmark, ... 
and fmally, you are back where you started, and resume what 
you originally set out to read The important idea is to 
recognize the sequence of bookmarks that waited for you to 
back out through them in tum. 

2. I have been struck by the ease with which we shift into and 
out of different levels or subjects as we talk with each other. 
If you listen closely to ordinary conversation, you might hear 
something like the following. Notice how the story line starts 
with one topic, pauses with a conversational bookmark, goes 
to another topic, and then comes back to where it was. 

"I went fishing with James and Penny last week. That 
reminds me, the boating show is coming up. Want to go? It is 
sure to be even bigger than last year. Anyhow, there we were, 
out on the lake, not a bite all day, when suddenly, ... " 

Thinking about activities such as these may help learners 
to understand recursive procedures such as the following, and 
may stimulate them to write recursive procedures of their 
own, when appropriate. 

TO ADD.LIST :LIST 
IFELSE NOT EMPTY? :LIST [ OUTPUT (FIRST :LIST) 

+ ADD.LIST BUTFIRST :LIST ] [ OUTPUT 0 ] 
END 

I believe that recursion is one of the most powerful 
processes within Logo. Let's all be on the lookout for addi
tional everyday experiences that contain some of the impor
tantelements of the recursive process, and share them with our 
favorite Logo learners-including Pete andRepete, of course! 

FD 100! 

Tom Lough, Founding Editor 
P0Box394 

Simsbury, CT 06070 

........ --------------~~~----------------~ 

r 
! 
! 
! 

! 



-"----- ------- -- . ------"~------------

Page4 -----LOGO EXCHANGE---~~ April1990 

Who's the Expert? 
Levels of Expertise 
by Eadie Adamson 

Herewith, some thoughts on experts. 

How often do you use the word "expert" in a Logo class? 
I use it often. 

"How do you ftll?" "Ask David, he's an expert." 
"What'swronghere?" "AskPhilip,he'sanexpertat 
debugging things like that." 
"How do!. ... ?" "Check with ... , he's an expert." 

I like to think that everyone is an expert at something, so 
this column for "experts" will be somewhat philosophical as 
well as procedural. It is important that everyone feel the 
special kind of confidence that comes from being pointed out 
as "expert" in some way. 

There's another issue about being "experts." Learning to 
use Logo Writer, or any other version of Logo, most people 
follow a fairly predictable path that was characterized won
derfully by Brian Harvey in a talk he gave at the fall CUE 
conference last October. Brian spoke of programming as an 
art. He broke learning to program into three stages: 

1. Learning the rules. 
2. Apprenticeship projects. 
3. Computer science. 

Brian talked of an aspiring artist (read: programmer) and what 
that artist must learn. Brian was talking about high school 
students. But I think that what he had to say about the process 
of learning to program and the stages of this development 
relates directly to what we see happening with teachers and 
students in classrooms, whether in elementary school, high 
school, or colleges. First, a student must gain the technical 
knowledge. To use LogoWriter, everyone must learn the 
language. That takes some time, more time for some than for 
others. Once past learning the language (more like learning to 
skate or ride a bike), there is the new-foundability to play with 
the language, explore it, do some simple and perhaps not so 
simple things with it. This period of time, working on 
developing the technical skill, is the period of practice, and it 
can last a very long time. 

When we are beginning to learn to use Logo, too often we 
confuse Brian's step 1 and step 2. Often we seem to leave out 
step 1 altogether. We need to pause and realize that our 
students need the chance to learn the rules ftrst and that this 
takes time. Once the rules are learned, Logo projects can and 
will flourish. Like a skater or bike rider, the basic skill is 
essential to that wonderful free movement. Successful uses of 

Logo in the classroom depend upon having students who have 
learned enough of the rules to be able to begin to work on 
projects that they have initiated. This is the time, as Brian 
characterizes it, in which the teacher becomes the resource. 
Learners tum to the teacher as the how-to person when a great 
idea just won't work because their skill level has not reached 
the appropriate height 

Michael Tempel and I have talked about this idea also, 
relating it to how a leader can make clear in teacher training 
sessions what the expectations should be. First, participants 
need to have a chance to learn the language. Then, once this 
is well begun, they can begin to consider applications. Yet all 
too often people come to workshops with seamy knowledge 
and expect to leave with a ''recipe" for curriculum applications 
under their belt, a kind of magical infusion that will just 
"happen." Teachers need a chance to learn for themselves 
fllSL Only then can they begin to think clearly about ways to 
use Logo. We have recently broken our workshops into 
stages, hoping to make this approach clear and also hoping 
that by devoting time to stage 1 (learning the language), stage 
21eamers will be even more successful. Learn the language 
first, for yourself, and then learn how to use it The same goes 
in the classroom. 

Since we're on the subject of language ••••. 

Recently I've had the opportunity to work with a 
colleague's fifth grade English class and to try some vari
ations on some of the language play so wonderfully outlined 
in Paul Goldenberg and Wallace Feurzeig's Exploring Lan
guage with Logo. These boys had a good grasp of rudimen
tary Logo. It was the right time to take them beyond the 
problems of programming and show them how they might use 
Logo to help them think about language. 

We are all experts (that word again!) on our own natural 
language, but sometimes we need a new experience, for 
instance work with Logo and language by generating sen
tences, to discover just how much we really know. 

Now, in this class we had a collection of"experts": I was 
the "Logo expert;" Jennifer was the "grammar expert, alias 
teacher," the students were all "English experts," but they 
didn't know it yet. They were also, at another level, ''Logo 
experts" too. As experts we each had a job: Since I was the 
Logo expert, I provided the beginnings of procedures for us to 
play with. Jennifer was the grammar expert, so she kept me 
out of trouble when it came to using grammatical terms that 
the boys had been studying. The boys were the language 
experts, or critics, who would not only supply the words but 
decide whether the sentences we generated were correct 
English. Eventually, as budding Logo experts, they would 
begin to write their own procedures and create their own 
language masterworks. 



Apri11990 -----LoGo ExcHANGE----~ PageS 

Jennifer and I wanted to see if a bit of language explora
tion with Logo would help the boys begin to use more 
descriptive words in their writing. We wanted to take the 
thinking about the words and place it in another context. 
Moving to the world of Logo, rather than focusing on their 
compositions, the boys might be able to explore more freely 
and might eventually carry some of that imaginative play with 
words back to their writing. I was also delighted to have an 
opportunity to work with Logo and language outside of the 
context of a regular Logo class, since my classes usually get 
so involved with projects that it is very unlikely I could get 
everyone's full attention (willingly, at least) for such a project. 

We began by working with a single computer and a large 
monitor. I started LogoWriter with one procedure already 
installed, that pick procedure that really ought to be a Logo 
primitive. (I find I use it so often in so many situations that, 
although I can add it quickly as a tool, it would be much nicer 
if it were a primitive. Are you listening: LSCI? Terrapin?) 

to pick :list 
output item 1 + random count :list :list 
end 

Jennifer and I had thought to begin with noun phrases and 
verb phrases, but the boys immediately wanted to generate 
simple noun-verb sentences. Master plan number one went 
out the window; noun and verb phrases could come later! We 
created a collection of nouns after I explained how the noun 
procedure worked. (They were only slightly familiar with 
output, not at all with the pick procedure). Our unedited 
beginning for a noun-the nouns get added within the brack
ets: 

to noun 
output pick 
end 

On to the verb! It turned out everyone was a verb expert. 
Here was the framework for the verb: 

to verb 
output pick [ 
end 

Now we needed to try printing a sentence. Aha! another 
Logo word as well as part of English grammar. What an 
interesting fit! 

print ( sentence noun verb } 

I introduced the parentheses here so that it would be easy to 
add sentence parts without adjusting our process. Sentence, 
you experts will recall, takes only two inputs unless sentence 
and its inputs are surrounded by parentheses. (Yes, I know 
you can surround print with parentheses and print the whole 
thing without the word sentence, but we're working on Eng
lish grammar here, remember? The sentence is what we want 
as oulput!) 

We tried a few sentences, then sat back and scanned the 
monitor, critiquing what we had produced. 

(By the way, occasionally you will see versions of lan
guage play that create variables for a nmm and verb, as in 
make ''nouns [ ] and make ''verbs [ ]. As an "expert" you 
might see that this creates quite a bit of clutter in the 
computer's memory. Think of all the names to store! Writing 
a procedure to output the words works just as well without 
cluttering up the space. For programming style, it's more 
elegant and ... more expert(?) to output something rather than 
create global names. A nice general rule might be to use 
output when you can; otherwise create names using make or 
name.) 

It was not until we had generated a few noun-verb 
sentences that the boys' English expertise began to show up. 
"We need an article," said one. Quickly the group supplied a 
few articles for a procedure we named "art" and we tried again. 

Now we needed adjectives too, as the ideas for sentence 
form grew more complicated. Eventually we concluded that 
the words we chose needed to have some logical relationships 
for the sentences to make any sense. The boys also saw they 
needed to distinguish between animate and inanimate nouns, 
for instance, for active verbs to make much sense in their 
sentences. We added a new procedure, person, and included 
everyone's name. We connected a sentence to another with 
"BUT. I asked for a substitute for "BUT and someone came 
up with [AT THE SAME TIME] which created some interest
ing situations. Periodically we stopped to print out the 
sentences generated before clearing the screen. 

Since then, the boys have begun to work on their own, 
newly "expert" at creating procedures to output a part of 
speech, and with some help from a handout I gave them for 
guidance. Yesterday I peeked into the classroom and found 
two boys at work at one of their classroom computers, trying 
to add punctuation to their sentences! Wonders never cease! 
I gave them a little help on that one. Their teacher, by the way, 
was delighted. It seems we've created a problem, though. 
Now decisions have to be made: who has priority on the 
computers (they have two)- the boys who wantto write or the 
boys who want to play with language. I retreated quietly to my 
lab! 

Bibliography 
Goldenberg,E. PaulandFeurzeig, Wallace. (1987) Exploring 

language with Logo. Cambridge, MA: MIT Press. 

P.S.: My thanks to Jennifer Jahos and her fifth grade class for 
all their enthusiasm as we continue to work together on 
language! 

Eadie Adamson 
1199 Park Avenue, Apt 3A, New York, N.Y. 10128 

........... ------------~~------------------~ 



,l...- ---------- --·---

Page6 -----LoGo ExcHANGE -----11 .. ~ April1990 

Creating Sentence Patterns 

Below is an essential tool.procedure. Either put it on the Logo Writer page you are working with now or make a tool page 
and add a procedure to your page to load this as a tool using gettooJs "name.of.tooLpage. 

to pick :list 
output item (1 + random count :list) :list 
end 

Make lists of words that are different parts of speech. Make a list of article, adjectives, nouns, verbs, etc. 

Put the words in the brackets in the procedures below. 

If you have a two-word part of speech-''pea green," for example-include it in its own set of brackets within the other brackets. 
Example: [ [pea green] red blue] 

to article 
output pick 
end 

to adj 
output pick [ 
end 

to noun 
output pick 
end 

to verb 
output pick 
end 

to adv 
output pick [ 
end 

Using only the names of the parts of speech, make your own patterns: 

print (sentence __ 

What combination makes a good descriptive sentence? 

What makes a headline? 

How about slogans, poems, movie titles? 

How might you need to change your lists to produce good results? 

Can you write a procedure to produce multiple sentences on the page? 

• ~oot ... P'I/ 
An ISTE Copy Me! Page Developed by Eadie Adamson 



Aprill990 -----LOGO EXCHANGE---~~ Page7 

April Fools! 
by Dorothy Fitch 

This issue is supposed to be for expertS. So what could a 
beginner's column possibly offer? Here are a few tips and 
tricks that will make you look clever, make your students think 
twice about what they see on the screen and on paper, and give 
you some tools to create expert-style programs for your 
students. 

April Fools Puzzlers 
(A couple of silly ideas to confuse and bewilder your 

students on April1) 

From the ''What's Wrong with the Turtle?" 
Department 

With a shape editor, you can create anew shape that looks 
just like the turtle. In Logo PLUS you can even create a turtle 
that points toward the bottom of the screen when you type 
HOME or DRAW. Imagine the look on your students' faces 
when they typeFORW ARD 50 and the turtle goes backwards, 
still facing down. If they type RIGHT 180, it will turn to point 
straight up, but when they type FORWARD 50 again, it still 
moves backwards. 

Here's how to create this baffling turtle. 

1. Load Logo PLUS. 
2. Type DRAW to see the standard turtle. 
3. Type RIGHT 180 to point it in the opposite direction. 
4. Type STAMP to stamp its image in the center of the 

screen. 
5. Type EDSHAPE 0 1 to enter the shape editor with the 

contents of the screen image. 
6. Press Control-C to leave the shape editor and define the 

image in the shape editor. 

Here's your new turtle shape. It looks like the regular 
turtle except that it points towards the bottom of the screen. 
When you experiment with it you will fmd that the movement 
commands are reversed, but that turn commands work nor
mally. That is, a right turn is still a right turn. 

FO:RVA:RD 50 

Type SETSHAPE 0 if you want to return to the normal 
turtle. Type SETSHAPE 1 to use the upside-down turtle. 

To save your new shape, type SA VESHAPES 
"AFTURTLE (for April Fools Turtle). To use it with your 
students, load Logo PLUS, then type READSHAPES 
"AFTURTLE. Then type SETSHAPE 1 to set the turtle to its 
new shape. (Do all this before your students arrive so that they 
won't know that a shapes file has been loaded.) 

You'll enjoy watching your students as they try to figure 
out what has happened. Challenge them to draw a design with 
this upside-down turtle. Discuss with them how you created 
the shape and why it works the way it does. Let them create 
new shapes for the turtle too! 

From the ''Logo Has Gone Crazy!" Department 

When you run the following AF procedure, it will look 
like you've just loaded Logo. There is even a Logo question 
mark prompt sign. However, when students type a Logo 
command, they will get an unexpected message. This is just 
a sample; of course you can tailor the messages for your class. 
The comments in the procedures (shown in small type) will 
help you understand how they work. 

TO AF 
NODRAW 

; clears the screen and displays the Logo PLUS greeting 

PRINT [Logo PLUS by Terrapin] 
PRINT [------·••••••••••••••] 
PRINT [ ] 
PRINT [(c) 1981 MIT] 
PRINT [(c) 1989 Terrapin, Inc.] 
PRINT [Version 1.1- 128K (ProDOS)] 

; use your version number, if different 

PRINT [ 1 
PRINT [WELCOME TO LOGO PLUS!] 
PRINT [ ] 
GET.COMMAND 

; call to the GET.COMMAND procedme 

END 

TO GET.COMMAND 
PRINT1 "? 

; puts a Logo-type prompt sign on the screen 

MAKE "COMMAND UPPERCASE REQUEST 
;gets the user's command and names it 
"COMMAND UPPERCASE converts lower 
case commands to upper case in Logo 
PLUS 

DO :COMMAND 

; calls the DO procedme, giving it the command that 

was entered (:COMMAND) 
GET.COMMAND 

; a recursive call to GET.COMMAND so that the next 



PageS -----LOGO EXCHANGE ---~DJ-o- Aprill990 

command can be "parsed" 
END 

TO DO :COM 
IF EMPTY? :COM THEN STOP 

; prevents Retlml. from stopping the procedure and 

makes it look like Logo since REQUEST (in the 
GET.COMMAND procedure) returns the user's input in 
the form of a list, you must test for commands in list 
form (in square brackets). 

IF :COM = [DRAW] THEN DRAW PRINT [I CAN'T 
THINK OF ANYTHING TO DRAW.] STOP 
; these next fom lines print a message when particular 

commands are typed 

IF :COM = [HOME] THEN HOME PRINT [SWEET 
HOME!] STOP 

IF :COM= [POTS] THEN PRINT [AND PANS.] 
STOP 

IF :COM = [CATALOG] THEN PRINT [SEARS OR 
MONTGOMERY WARD?] STOP 

IF :COM = [FILL] THEN PRINT [I'M ALREADY 
FULL!] STOP 
; To test just the first word that is typed, use FIRST 

:COM, which returns the frrst item in the command list 
that is entered. For example, FORWARD or BACK 
with any number moves the turtle a random amount 
between 0 and 99. RT or LT turns the turtle a random 
amount between 0 and 359 degrees. 

IF FIRST :COM = "FD THEN FORWARD RANDOM 
100 STOP 

IF FIRST :COM = "BK THEN BACK RANDOM 100 
STOP 

IF FIRST :COM = "RT THEN RIGHT RANDOM 360 
STOP 

IF FIRST :COM 
STOP 

"LT THEN LEFT RANDOM 360 

; These instructions make Logo do the opposite of the 

command that is entered. 
IF FIRST :COM - "ST THEN HT STOP 
IF FIRST :COM - "HT THEN ST STOP 
IF FIRST :COM - "PU THEN PD STOP 
IF FIRST :COM = "PD THEN PU STOP 

; Giving a command to change the pen or background 

color produces an interesting message or display. 
IF FIRST :COM = "PC THEN PRINT [I'M OUT 

OF INK! ] STOP 
IF FIRST :COM = "BG THEN BG 1 BG 2 BG 3 

BG 4 BG 5 BG 0 PRINT [AWESOME!] STOP 
; If a REPEAT command is given, the instructions in 

the list are printed on the screen as many times as they 
should have been executed. 

IF FIRST :COM = "REPEAT THEN REPEAT 
ITEM 2 :COM [PRINT LAST :COM] STOP 
; Finally, this command prints HUH? (or some 

message) for any other untested command that is typed. 
PRINT [HUH?] 

; or [JE NE COMPRENDS PAS!] 

END 

Add additional tests to the DO procedure for other commands 
with which your students are familiar. To start the fun, type 
AF. (Do this before students arrive so they think that you have 
just loaded Logo. Tell them they can have some free time to 
explore Logo.) 

After your students have had some fun with this program 
let them change the messages and add other instructions to the 
DO procedure, using existing lines as models. Then they can 
switch computers and see what their friends have created. 

For older students, you can remove some of the silly 
messages and instead add some more thought-provoking 
effects. 

For example, this instruction moves the turtle 10 times the 
input given: 

IF FIRST :COM = "FD THEN FORWARD 
(LAST :COM) * 10 

This instruction turns the turtle half the amount of the 
student's command: 

IF FIRST :COM - "RT THEN RIGHT 
(LAST :COM )/ 2 

This instruction moves the turtle backwards the distance given 
in a FORWARD command: 

IF FIRST :COM = "FD THEN BACK (LAST :COM) 

See if your students can figure out the special function for each 
command. 

Are You Sure? 

Here is a challenge that I have used with both children and 
adults learning Logo. They only need to have a little experi
ence with turtle graphics commands and simple procedure 
writing. 



Aprill990 -----LOGO EXCHANGE -----ll~~· Page9 

Here is the task: Draw a picture of what would be drawn 
on the Logo screen if you type BARBELL. 

TO BARBELL 
CLEARSCREEN 

CIRCLE 
LEFT 90 
FORWARD 90 
LEFT 90 
CIRCLE 
END 

TO CIRCLE 
REPEAT 4 [FORWARD 2 0 
RIGHT 90] 
END 

You may be surprised at the variety of designs you get! 
More people than you would imagine will pay more attention 
to the names of procedures than to the actual instructions in the 
procedures. It just goes to show you how important it is to give 
a little thought to the names you give your procedures. Type 
these instructions in Logo to see the correct answer! 

Keyboard Fun 

You may be familiar with the READCHARACI'ER 
command in Logo, which allows you to access keys on the 
computer's keyboard. (You may want to consult your Logo 
documentation for complete details on using this command.) 
"Instant" -type single keystroke programs typically use 
READCHARAC1ER to let young learners press letters to 
make the turtle move and turn. For example, they can press F 
to move the turtle forward 10 steps, R to turn it to the right 30 
degrees, and so on. But did you know that you can also access 
non-letter keys, Control characters and Open-Apple key
strokes? 

Each key on the keyboard has a special number code 
assigned to it, which is how the computer distinguishes among 
the keys that you press. This number is known as its ASCII 
code (American Standard Code for Information Interchange). 
You can "look up" the ASCII code for a particular key by 
typing this instruction: 

PRINT ASCII READCHARACTER 

or 

PR ASCII RC 

Press Return and then press any key. The number that you see 
is the ASCII code for that key. The next procedure, lets you 
look up as many ASCII codes as you wish. (Press Control-G 
to stop this procedure; its ASCII code, which is 7, won't be 
printed, since Control-G is a special Logo keystoke.) 

TO CODES 
PRINT ASCII READCHARACTER 
CODES 
END 

You will notice that upper case letters have a different 
ASCII code than lower case letters, punctuation marks each 
have their own ASCII code, and special keys (Esc, Delete, 
Return, Tab, space bar, arrow keys, etc.) have a unique 
number. The Control key doesn't have an ASCII code of its 
own, but produces one when used in combination with letter 
keys. The ASCII code for Control-A is 1, for Control-B is 2, 
for Control-Cis 3, etc. If you know the ASCII code for a 
character, then you can print it by typing an instruction like 
this: 

PRINT CHAR 65 
A 

The Open-Apple key is equivalent to Paddle button 0, and 
both the Closed-Apple key and the Option key are equivalent 
to Paddlebutton 1. The paddlebuttons don't have ASCII 
codes, but they can be deteCted. Try typing 

PRINT PADDLEBUTTON 0 

Logo responds FALSE. But if you type the instruction again 
and hold down the Open-Apple key when you press Return, 
Logo will respond 1RUE. The Logo command PADDLE
BUTTON returns 1RUE if the Apple key is being pressed and 
FALSE if not Try the same instruction with P ADDLEBUT
TON 1 and the Closed-Apple or Option key on your keyboard. 

Here is a sample set of procedures to demonstrate how to 
use of all these special keys, including the Apple keys: 

TO INSTANT 
DO.KEY READCHARACTER 
INSTANT 
END 

TO DO.KEY :KEY 
IF (UPPERCASE :KEY) = "F THEN FORWARD 10 

STOP 
IF (UPPERCASE :KEY) = "R THEN RIGHT 30 

STOP 
IF :KEY= CHAR 32 THEN PRINT [THAT'S THE 

SPACE BAR.] STOP 
IF :KEY= CHAR 13 THEN PRINT [THAT'S THE 

RETURN KEY. ] STOP 
IF :KEY = CHAR 9 THEN REPEAT 5 [PRINT1 

CHAR 32] PRINT [TAB] STOP 
; prints 5 spaces and then the word Tab. 



r 
! 

Page 10 -----L 0 G 0 EXCHANGE ----41111-~· Aprill990 

How to add spice 
to your lessons 

TO ADD.SPICE 
Buy Logo Innovations. 
Pick one of 18 projects. 
Use it with your class today. 
Show others the neat things you 

can do with Logo. 
END 

Logo Innovations is a spice that can perk up your 
classroom lessons. While other Terrapin products 
focus on one subject in depth, Logo Innovations is 
the seasoning that will complement any curriculum. 

The design aJ left was generated 
using the Mandala activity. 
This mandala is a random 
symmetrical design, a perfect 
Logo application. 

Choose from 18 Logo Innovations activities 

Logo Miniature Golf-teach estimation and strategy 
Astronomy--create constellations using Logo 
Logo Weather Station-connect your computer to 

the outside world and monitor weather conditions 
Proportions-practice ratios using triangles 
Little Turtle Goes to a Parry-introduce young 

learners to directions through a delightful story 
Vectors-use simple Logo commands to add vectors 

Plus 12 more projects to explore! 

The double-sided disk contains 19 ready-to-use 
programs, and the 32-page resource guide includes 
three off-computer activities. 

See what other teachers are doing with Logo
order your copy today! 

Terrapin Software 
400 Riverside Street 

(207) 878-8200 
Portland. ME 04103 

Nrune ________________________________ ___ 

Admess ____________________________ ___ 

City ________ State __ Zip _____ _ 

_ I run enclosing a check to Terrapin for $14.95. 

Please check the version of Logo you have: 

__ Terrapin Logo for the Apple _ Logo PLUS 

IF ALLOF (PADDLEBUTTON 0) (:KEY • CHAR 8) 
THEN SETX XCOR - 10 STOP 
; moves the turtle 10 steps to the left if the left arrow is 
pressed while the Open-Apple key is pressed down. 
(AILOF requires that all of the following expressions 
be TRUE for the rest of the instruction to be executed.) 

IF :KEY - CHAR 8 THEN SETX XCOR - 1 STOP 
; moves the turtle 1 step to the left when the left arrow 

is pressed by itself. 
IF ALLOF (PADDLEBUTTON 0 ) (:KEY ~ "S } 

THEN REPEAT 4 [FORWARD 40 RIGHT 90] 
STOP ;draws a square if Open-Apple S 
is pressed. 

IF :KEY = CHAR 27 THEN PRINT [THANKS FOR 
PLAYING.] TOPLEVEL 

; Esc ends the program. 
END 

Type INSTANT to experiment with these keystrokes. The 
program only tests for F, R, space bar, Return, Tab, Open
Apple left arrow, left arrow, Open-AppleS, and Esc; all other 
keys are ignored. You can add other lines, but be aware of the 
order of the instruction lines, which can be significant. For 
example, in the above example, the combination of Open
Apple and left arrow must be tested before the left arrow is 
tested by itself; otherwise the procedure will stop before the 
Open-Apple and left arrow combination is tested. 

Another handy use of ASCII codes is in this procedure, 
which prompts the user to press a key to go on: 

TO GO.ON 
PRINT1 [Press any key to go on (or ESC to 

quit): l 
IF READCHARACTER = CHAR 2 7 THEN TOP LEVEL 

ELSE CLEARTEXT 
END 

Use these examples as models for creating your own 
programs that do more interesting things! 

Now you're getting to be a Logo expert yourself! Go 
show your students and colleagues a thing or two! 

A former education and computer consultant, 
Dorothy Fitch has been the Director of Product 
Development at Terrapin since 1987. She can be 
reached at: 

Terrapin Software, Inc. 
400 Riverside Court 
Portland, MA 04103 



April1990 -----LOGO EXCHANGE -----1111--• Page 11 

by Rina Zazkis and Uri Leron 

Introduction 

When teaching computing science--or any other topic 
with any depth-a fundamental conflict arises. How are we to 
render our teaching both professionally respectable and edu
cationally sound at the same time? In other words, how are we 
to accommodate the tastes of both the professional and the 
student? Unfortunately, the main reasons for the importance 
of an advanced programming construct-such as aiding ab
straction, controlling the complexity of large software sys
tems, or increasing the expressibility of the language--are 
almost always unappealing and hard to explain to novices. 

This conflict poses a challenge to the creativity of teach
ers and curriculum developers: Given a particular non-trivial 
topic you wish to teach, devise activities for the learner in 
which both perspectives are genuinely represented. Such 
'generic' activities are useful as bridges between the novice's 
needs and the high-level views of the expert. It is therefore 
important that the computing education community create as 
large a pool as possible of such generic activities for the 
various topics typically appearing in computing courses. 

During the years we have been working as teachers, 
teacher educators, and curriculum developers, our group at the 
Israeli Logo Centre have collected many such activities, some 
from the literature, some home-made. In this article we wish 
to exemplify the above considerations with one classroom 
idea, which we have found to be particularly effective in its 
role as bridge. The example is an activity for introducing the 
RUN construct in Logo (which takes as input a list of Logo 
commands and executes them), in which the above conflict is 
particularly pronounced: RUN is considered very powerful by 
experts, but this power is hard to convey to novices. 

Our example can thus be viewed at two different levels. 
On one level it is simply a classroom idea. On another level, 
the example represents a bridge-spanning at one end the 
student's need for a concrete, engaging activity, but at the 
other end-showing how a particular programming construct 
can enhance the expressive power of the language. In other 
words, our example, while simple and engaging to thesludent, 
is yet sophisticated enough to require enriching the language 
to be able to capture the new pattern. 

A classroom idea: Variations on a theme 
What follows is a description of a classroom activity for 

introducing RUN, with some educational and computational 
observations added to it. The general direction of the activity 

is from a very free, "creative" stage, gradually to a more 
focused and purposeful discussion. 

DDDDD 
We first present to the students the picture shown above 

-five squares in a row-and the procedure generating it. (It 
is also possible to let them program it, but for experienced 
students this is a well-known activity, and we prefer to 
concentrate on the task at hand.) 

TO ROW.OF.SQUARES 
MOVE. TO. START 
REPEAT 5 [SQUARE MOVE] 
END 

TO SQUARE 
REPEAT 4 [FORWARD 30 RIGHT 90] 
END 

TO MOVE.TO.START 
cs 
LEFT 90 
PO 
FORWARD 100 
PD 
RIGHT 90 
END 

TO MOVE 
RIGHT 90 
PU 
FORWARD 40 
PO 
LEFT 90 
END 

We then ask them to invent variations on the theme of the 
picture. 

This is done in two stages, each consisting of a short 
classroom discussion, then some lab work in small groups, 
then again a "plenary" discussion in which the work of the 
small groups is shared. In the ftrSt stage, the students are 
encouraged to generate as many-and as wild-variations as 
they can think of, with no attention paid to programming 
issues. In the second stage we go over the list collected in the 
first one, and try to see which of the suggested variations can 
be realized by adding an input variable to the above procedure. 
For brevity, we present here the results of the two rounds 
together. 



Page 12 -----LOGO EXCHANGE----~ April1990 

Typically, students come up with suggestions such as the 
following: 

• Vary the size of the squares (introduce a :SIZE variable). 
(In the following we shall further abbreviate these two 
stages as: "Vary the :SIZE of the squares".) 

• Vary the distance between adjacent squares. 
• Vary the color of the squares. 
• Vary the starting :POSmON of the drawing. 
• Vary the :SHAPE of the repeating figure. (Note: This 

seemingly innocent idea is what we are after, but our skilled 
teacher menages to keep a straight face so as not to lose the 
creative momentum ... ) 

• Vary the :NUMBER of the squares, etc. 

Next, students try to implement the above ideas (or some 
of them) at the computer. We note that except for the case of 
the :SHAPE variable, none of the variations poses any serious 
problem to students with reasonable knowledge of procedures 
and variables. Following the actual classroom practice, but in 
a much abridged and streamlined fashion, we now present an 
analysisoftheremainingcaseof:SHAPE, discussingfrrstour 
goal, then the difficulties it poses, and, finally, the new means 
(the RUN instruction) for achieving it. 

We wish to have a procedure that will accept as input a 
shape (a triangle, a square, a house, a mouse, etc.) and draw a 
row of such shapes. Starting from the given and successfully 
running ROW.OF.SQUARES, probably the most natural 
attempt is to replace the SQUARE in it with a variable 
:SHAPE. Weare thus led to consider the following procedure: 

TO ROW. OF. SHAPES :SHAPE 
MOVE.TO.START 
REPEAT 5 [ :SHAPE MOVE] 
END 

Having written this procedure, a problem immediately 
presents itself. In what form shall we execute it? (We assume 
that the shapes in question are already programmed as proce
dures in Logo.) Again, wefollowwhat'snatural. Here are the 
three ways such a procedure could possibly be executed, 
together with the resulting Logo error messages: 

ROW.OF.SHAPES SQUARE 
•(a square is drawn and ... ) SQUARE didn't output to 
ROW.OF.SHAPES ROW.OF.SHAPES "SQUARE 
•I don't know what to do with "SQUARE 
ROW.OF.SHAPES [SQUARE] 
•I don't know what to do with [SQUARE] 

We digress for a brief explanation (in anthropomorphic 

terms) of these error messages. In the first case, 
ROW.OF.SHAPES knows it needs an input Not getting it 
directly, it hopes to get it as an output from the expression that 
follows. It therefore executes SQUARE (which accounts for 
the drawing) and then, when SQUAREfailstooutput, it issues 
an appropriate complaint. The two other cases are similar to 
each other, and we shall explain only the third. Here the input 
is the list [SQUARE], which becomes the value of the SHAPE 
variable. The resulting error message "I don't know what to 
do with [SQUARE],"literally explains what happens when, in 
the course of the execution, Logo meets the object :SHAPE. 

Indeed, what do we want Logo to "do with [SQUARE]"? 
Why, RUN it, of course! And in Logo we say just this: 

RUN [SQUARE] 

Or, using our variable: 

RUN :SHAPE • 

Here is the complete procedure to produce the illustration 
below: 

TO ROW. OF. SHAPES :SHAPE 
MOVE. TO. START 
REPEAT 5 [RUN :SHAPE MOVE] 
END 

DDDDD ROW.OF.SHAPES (SQUARE) 

ROW.Of.SHAPES ITRIAtiGLEI 

AOW.OF.SHAPES (STAR] 

In general, RUN takes one input, which must be a list of 
Logo expressions, and executes them as if they were typed 
from the keyboard. Below are some more examples. 



Aprill990 -----LOGO EXCHANGE----~ Page 13 

IIOW.Of'.SHAPES (STAR FD 20) 

IIOW.Of'.5HAPES (SQUARE TAIANSLE 

Looking back on the above classroom activity, we note 
several features that deserve further mention. To discuss these 
features it is convenient to group them under the separate 
headings of educational and computational concerns. To us, 
however, the most interesting feature of this approach is a 
mixture of the two, i.e., the combination of a soft, activity 
based, entry to teaching RUN, with a genuine demonstration 
of its power. 

The computer science perspective 

Procedures as data. 
The main power of RUN as a programming construct is 

that it enables us to use procedures as data, making it possible 
to pass them as inputs and outputs to other procedures. In fact, 
what we achieve here is blurring the classical distinction 
between "passive" data and "active" procedures. This pow
erful capability of the language is automatic in LISP, and in 
fact, is considered one of the main sources of its power 
(Abelson and Sussmann, 1985). To recapture it in Logo, as 
demonstrated above, one first masks the relevant procedure as 
data by bracketing it, only to be later unmasked with RUN 
when it is to be executed. 

Deferred execution. 
Another way of looking at the above maneuver, is as a 

method to prevent the procedure from being executed prema
turely (cf. the unsuccessful attempt ROW.OF.SHAPES 
SQUARE above). This method is sometimes referred to as 
"deferred execution." According to this view, the purpose of 
bracketing the procedure's name is to prevent the Logo 
evaluator from executing it when it is first met We can thus 
perform various operations on it and fmally have it executed 
by applying RUN at precisely the right moment. 

Expressive power. 
Perhaps the most important aspect of the use of RUN is 

that it enhances the expressive power of the language, ena
bling us to capture in it patterns that were previously inacces-

sible. Without the benefit of RUN we can capture in the 
language individual patterns like "row of squares" or "row of 
stars," but the more abstract pattern "row of similar shapes" is 
beyond our descriptive power. The same phenomenon, inci
dentally, is encountered much earlier when introducing input 
variables: We can describe in Logo individual squares (of 
length 50, 100, etc.), but without variables, we cannot express 
the abstract idea of "any square." Since input variables 
considerably enhance the expressive power of the language, a 
major way to further extend that power is by extending the 
concept of variable (via RUN) to encompass procedures as 
well. 

The educational perspective 

Consider the following by-now-classical approach to 
introducing input variables to beginners. The students draw 
squares of various sizes, writing a separate procedure for each. 
On reflection, they discover that their procedures actually all 
look the same, except the input to FORWARD. It is then quite 
natural to introduce a variable to stand for "any desired 
number of turtle-steps." 

Our approach to introducing RUN is continuous with this 
earlier approach. Here again we study "variations on a 
theme," this time varying the shape in the repeating pattern. 
Having written the separate procedures 
ROW.OF.SQUARES, ROW.OF.STARS, ROW.OF.MICE, 
etc., the similarity between them invites replacement of the 
individual shapes with a :SHAPE variable. 

On a more general level, this activity also demonstrates 
the technique of creating a need for a new idea, even tempo
rary frustration, before dumping it on the helpless students. 

How is RUN introduced by other sources? All authors 
seem to agree that the mere defmition ("RUN takes one input, 
which must be a list of Logo expressions, and executes them 
as if they were typed from the keyboard") is not a very useful 
introduction. Thus they proceed to supplement it with ex
amples that aim to show its power (e.g., INSTANT in Abel
son, 1982, p.152; CALCULATOR and WHll..E in Apple 
Logo II Reference Manual, p.138). All these examples, while 
genuine demonstration of the power of RUN, are not given to 
thekindofvariations-on-a-themeactivity we have found to be 
so effective. They also mostly belong to advanced program
ming topics that are not very appealing to the average begin
ner. 

We conclude with an additional variation on our original 
theme that has proved to be an interesting and useful follow-



Page 14 -----LoGO EXCHANGE----... April1990 

DO DOD 

CURY[.OF .SQUARf$ [MOVE.ST.ARCJ 

D 
D 
0 
0 
D 

CURVE.Of. SQUARES (r'MJVE.U I A&ONALL T1 

up activity for the students. This variation often actually 
appears in the first round of students' suggestions, but carry
ing it out is best postpOned to a later stage. The idea is to vary 
the curve on which the repeating squares are located. 

Here is the procedure: 

TO CURVE. OF. SQUARES :MOVE 
MOVE. TO. START 
REPEAT 5 [SQUARE RUN :MOVE] 
END 

Finally, combining the shape and the curve variations we 
get the procedure CURVE.OF.SHAPES :SHAPE :MOVE . 

The illustration below gives a few examples of the great 
variety of patterns that this single two-line procedure can 
express. (Note the four rectangular spirals in the last drawing. 
Can you explain what happened to the fifth one?) 

References 
Abelson, H. ( 1982). Logo for the Apple I/. New York: BYTE/ 

McGraw Hill. 
Abelson, H. and Sussman, G. J. (1985). Structure and inter

pretation of computer programs. Cambridge, MA: MIT 
Press. 

Rina Zazkis and Uri Leron 
Deparunent of Science Education 

Technion - Israel Institute of Technology 
Haifa 32 000, Israel 

Bitnet: ttr0128@technion 

The turtle moves ahead. 

Introduction to Programming in 
Logo Using Logo Writer 

Introduction to Programming in 
Logo Using Logo PLUS. 

Training for the race is easier 
with ISTE's Logo books by 
Sharon Yoder. Both are designed 
for teacher training, introductory 
computer science classes at the 
secondary level, and helping you 
and your students increase your 
skills with Logo. 

You are provided with 
carefully sequenced, success
oriented activities for learning 
either Logo Writer or Logo PLUS. 
New Logo primitives are de
tailed in each section and open
ended activities for practice con
clude each chapter. 
$14.95 + $2.65 shipping per copy 

Keep your turtles in 
racing condition. 

ISTE, University of Oregon 
1787 Agate St., Eugene, OR 97403 

ph. 503 I 346-4414 



April1990 ------LOGO EXCHANGE -----aDJ-~· Page 15 

Reach Out and Touch Logo 
by Judi Harris 

Does paddling have a place in the Logo classroom? 
Certainly ... when it is the computer's paddles that are being 
used. Paddle input is supported by most versions ofLogo, and 
can be anything but painful. 

Joysticks, game paddles, and touch-sensitive graphics 
tablets (such as the KoalaPad) are often used as alternative 
input devices for game and graphics programs. All are 
connected through a microcomputer's game port or game 
adaptor, and can be directly accessed with two Logo primi
tives. 

With these inexpensive peripherals, pre-readers, physi
cally challenged swdents, and those of us that just like to 
"piddle-paddle" can use Logo in a host of unique and exciting 
ways. Command of just two Logo commands may eliminate 
the need to purchase pre-programmed software that accesses 
touch tablets, and cannot be easily tailored to meet individual 
swdent needs. 

In this article, I would like to concentrate on Logo 
interfaces and applications with graphics pads such as the 
KoalaPad, Animation Station, and Touch Window. 

Touching Primitives 
When someone touches a graphics pad connected to a 

microcomputer, two types of information can be detected and 
acted upon. The two-dimensional position of their fmger on 
the surface of the tablet can be registered with the PADDLE 
command. The BUTTON? or BUTTONP (in Terrapin Logo, 
P ADDLEBUTTON) command can also be used to determine 
if graphics pad buttons are being pressed 

Paddle information is typically represented by numbers 
ranging between 0 and 255. PADDLE 0 outputs position 
information along the X (horizontal) axis; PADDLE 1 num
bers refer to Y (vertical) axis position. A simple recursive 
procedure can be used to print paddle information on the 
screen as you move your finger or a stylus over the surface of 
a graphics pad: 

TO PADDLE.POS 
CT 
PRINT SENTENCE [PADDLE 0:] PADDLE 0 
PRINT SENTENCE [PADDLE 1:] PADDLE 1 
PADDLE.POS 
END 

Button information is output as either "TRUE or 
"FALSE; the former if the touch pad button indicated is being 
depressed, the latter if it is not 

TO BOTTON.PRESS? 
CT 
PRINT SENTENCE [BOTTON 0:] BUTTON? 0 
PRINT SENTENCE [BUTTON 1:] BUTTON? 1 
BOTTON. PRESS? 
END 

Paddle information is most commonly used to sense 
position of contact with the graphics tablet. Button informa
tion is typically used in a conditional statement that allows a 
user to select an option (such as a screen change or sound 
effect) whenever s/he chooses. 

A Teacher's Touch 
If position on the surface of the graphics tablet can be 

detected with Logo commands, why not correlate the position 
of the blrtle on the screen with the location of the fmger or 
stylus on the touch-sensitive pad? 

At first glance, this seems simple enough: 

SETPOS SENTENCE ( PADDLE 0 ) ( PADDLE 1 ) 

or, in Terrapin Logo 

SETXY ( PADDLE 0 ) ( PADDLE 1 ) 

OOPS! PADDLE 0 inputs range from 0 to 255, but X-axis 
screen coordinates span approximately -140 to 140 or -120 to 
120, depending on the version of Logo that is being used. If 
SETPOS is used with non-adjusted PADDLE 0 numbers, the 
turtle could only assume X axis positions between 0 and 255. 
Negative coordinate placements would be omitted, and screen 
boundaries would would be ignored. There is a similar 
discrepancy with PADDLE 1 andY -axis numbers. 

Simple tool procedures that recalculate the range of 
paddle information and offset the turtle's screen position 
relative to sizes of different graphics pads can be used to 
correct the discrepancies. 

For the KoalaPad: 

TO X.POINT 
OUTPUT ((PADDLE 0 ) - 131 ) * 1.078 
END 

TO Y.POINT 
OUTPUT ((PADDLE 1 ) - 130 ) * - 0.975 
END 



.---------------------------, 
Page 16 -----LOGO EXCHANGE ----11~~· Apri11990 

For Animation Station: 

TO X.POINT 
OUTPUT ((PADDLE 0 ) - 128 ) * 1.025 
END 

TO Y.POINT 
OUTPUT ((PADDLE 1 ) - 128 ) * - 0.86 
END 

For the Touch Window: 

TO X.POINT 
OUTPUT ((PADDLE 0 ) - 125 ) * 1.14 
END 

TO Y.POINT 
OUTPUT ((PADDLE 1 ) - 120) *- .73 
END 

Placing the turtle at newly-calculated positions is a 
simple matter. Since screen coordinates are usually repre
sented by integers (numbers without decimals), X.POINT and 
Y .POINT output should be simplified with the INT (integer) 
command (as in POINT, below) before setting the turtle's 
position to X.POINT and Y .POINT values with 
PLACE.TUR'ILE. 

TO POINT 
OUTPUT LIST ( INT X.POINT 
( INT Y .POINT ) 

END 

TO PLACE. TURTLE 
SETPOS POINT 
PLACE. TURTLE 
END 

The turtle's screen position will now reflect changing points 
of contact on the graphics tablet 

Touchy Areas 
X.POINT andY .POINT information can also be used to 

delineate sensitive areas on the tablet. This is especially 
appropriate for Touch Window applications, since this type of 
graphics pad is translucent, and can be mounted on the front 
of a monitor, allowing users to see what is displayed on the 
screen through the graphics tablet itself. 

Suppose that we wanted to divide the screen/tablet area 
into four sections, so that a physically impaired child would 
have to touch each screen section to see a picture displayed 
inside it. Four procedures could be written as follows: 

TO SECTl? 
OUTPUT AND ( X.POINT < 0 ) 
( Y.POINT > 10 ) 

END 

TO SECT2? 
OUTPUT AND ( X.POINT > 0 ) 
( Y. POINT > 1 0 ) 

END 

TO SECT3? 
OUTPUT AND ( X.POINT < 0 ) 
( Y .POINT < 10 ) 

END 

TO SECT4? 
OUTPUT AND ( X.POINT > 0 ) 
( Y.POINT < 10 ) 

END 

These procedures could then be used as conditional input. 

TO TOUCH.PICTURES 
IF SECT1? [LOADPIC "UPPER.LEFT) 
IF SECT2? [LOADPIC "UPl?ER.RIGHT) 
IF SECT3? [LOADl?IC "LOWER.LEFT) 
IF SECT4? [LOADPIC "LOWER.RIGHT] 
TOUCH.l?ICTURES 
END 

A Touch of Creativity 
An interesting programming challenge might be to write 

a procedure that would accept four touches as the com~ of 
a sensitive area, then automatically defme a SECTI-like 
procedure. Sue Anderson, teacher of preschool handicapped 
children in Albemarle County, Virginia, conceived and 
solved this problem so that she could use a Touch Window in 
conjunction with a Logo-controlled videodisc player. Now 
when the speech synthesizer (also driven by Logo) tells her 
students to "touch the gorilla's belly," they can look through 
the clear graphics tablet at the videodisc image and touch the 
area that she defined with her time-saving tool procedure. 

Other results for touching sensitive areas can be pro
grammed easily. For example, 

• Different musical notes could play when the appropriate 
lines or spaces were touched on a screen display of the 
musical staff. 

• Maze walls could buzz when the turtle makes contact with 
them. 

• Printed words (such as "cat," "truck," "blue," and "green") 







I want children to reinvent the wheel. 
Of course, they are going to reinvent it anyway as part of 

their own learning experience. But they will do so all the 
more richly if wheels and talk about wheels and interest in 
wheels are well represented in their learning environment .. . 
and, above all, if the significant people in their lives sincerely 
believe in them as discoverers. 

A full appreciation of children as inventors does not 
come easily. In my book, Mindstonns, I wrote about how 
reinventing gears and making my own theories about these 
particularly wonderful wheels helped me grow up to be a 
mathematician. But it took me half a lifetime to arrive at that 
appreciation of my own experience, and the process is by no 
means over. Every day still brings new insights into my own 
learning and with it the joyous sense of deeper empathy with 
other learners. 

You can learn a lot about inventing and about learning by 
observing children. But to go further you have to jump in 
and do it yourself. What is most wonderful about the LEGO 
materials is that they allow everyone, young or old, naive or 
sophisticated, boy or girl, to use the same stuff as a medium 
for invention. 

Why not pursue your own reinvention of the wheel? Think 
of all the questions you can ask. Why do some vehicles have 
four wheels and some three and some two? Or one? What 
good are wheels anyway? They make the cart easier to pull ... 
but why? How could any one person know all the answers? 

Or, think about the many different kinds of wheels. In the 
LEGO materials, there are just plain wheels, gear wheels and 
pulley wheels. All these make things move, but there is also 
a black and white sectored wheel for measuring motion rather 
than making it happen. 

Then think of the wheels you can build: ferris wheels, 
waterwheels, paddlewheels, steering wheels, flywheels and 
the kind of activity wheel people put in a hamster's cage. 
Don't you think you might reinvent some more? 

You may discover for yourself that, like a wheel, learning 
can go on and on. Or, even better, your students might help 
you make this discovery together! 

Seymour Papert 
LEGO Professor of Learning Research 
Massachusetts Institute of Technology 

3 



4 

I L EGO Dacta, the educational division within the world famous LEGO Group, brings 
excitement to today's classrooms! LEGO bricks, motors, lights, sensors, pulleys, 
gears and computer controls are combined into a learning system of innovative 

classroom sets for students in grades 3 through 12. 
Just like shifting gears on an automobile, students can progress through the system of 

LEGO Dacta educational products. The Technic sets are like the lower gears used to get the 
automobile moving. Technic I introduces simple machines; Technic II adds the concept of 
motorization. Technic Control sets are like the higher gears used to take the automobile to 
greater speeds. Technic Control 0 introduces computerized control using a special version of 
the Logo computer language. Technic Control I extends computerization to robotics. Technic 
Control II provides for the construction and operation of computerized measuring instruments. 

By the time students progress through the entire LEGO Dacta system, they will have 
encountered important concepts from mathematics, physical science, physics, robotics, 
engineering and artificial intelligence. In addition, they will have participated in important 
processes such as problem solving and cooperative learning. This is why we say, "Students 
gear up for learning with LEGO Dacta educational products:' 

Quality 
LEGO products are known world-wide for their high quality. LEGO Dacta sets 
stand up to many years of classroom use, and carry a lifetime guarantee. 

Learning System 
LEGO Dacta products are organized into a learning system ranging from 
Technic sets for simple machines up through Technic Control sets for robotics, 
physics and artificial intelligence. Moreover, each set is fully compatible with 
the others, enabling students to build even more complex projects. 

Hands-On 
LEGO Dacta products provide students with unlimited opportunities for 
hands-on learning. They can explore, investigate and apply what they have 
learned through building with LEGO Dacta sets. 

Storage 
LEGO Dacta Technic and Technic Control products are packaged in special 
trays and storage units to simplify classroom management. Several sets have 
transparent lids, permitting an instant inventory. 

Curriculum Support 
LEGO Dacta Technic and Technic Control sets are accompanied by student 
activity cards and other teacher support material. LEGO Dacta educational 
specialists provide training, teaching ideas, curriculum connections, grant 
proposal writing assistance and technical support. 



Technic Products 

Technic I Set & Lesson Plans 
Items 1030, 1031, 1035, 999 

Technic I Activity Center 
Item 9603 

Technic II Set & Lesson Plans, 
Pnewnatic Elements 
Items 1032, 1033, 1036 

Additional Technic Products 
Items 9605, 1038, 1039 

Technic Control Products 
Technic Control 0, 
LEGO® TC logo 
Items 951, 966 

Technic Control I 
Item 1090 

Technic Control II 
Item 1092 

Spare Parts & 
Technical Specifications 

Curriculum Areas 

Simple Machines 
Physical Science 

Physical Science 
Problem Solving 

Motorized Machines 
Technology 

Curriculum Areas 

Science 
Mathematics 
Social Studies 
Technology 

Robotics 
Artificial Intelligence 
Engineering 
Technology 

Robotics 
Scientific Measurement 
Technology 

All prices for LEGO Dacta products in this catalog 
are valid through December 15, 1990. 
Send orders to: 
LEGO Dacta, 555 Taylor Road, Enfield, CT 06082 
1-800-527-8339 

Grade 
Levels 

3-9 

3-6 

4-9 

3-9 

Grade 
Levels 

4-12 

7-12 

7-12 

• ,·~' I •: • <..)' \: • ' ,:' ,.,:,· • 

' .., 4 r ;r, • • 

: ·:->··. · .. ·.·: :·,.~:: :· .. :.:::;~;:<:Y; .. :, 

Page 

6 

8 

10 

12 

Page 

14 

20 

21 

22 

5 



6 

I L EGQ® Dacta Technic I (item 1030) 
gives students in grades three through 
nine a hands-on introduction to the 

fundamental concepts of simple machines, such as 
levers, gears and pulleys. This award-winning set is 
one of the most popular of all LEGO Dacta products, 
and with good reason. 

Students explore important concepts by designing 
and building simple models. They investigate the 
properties of simple machines by manipulating the 
models. Practical problems challenge students to 
apply what they have learned. 

Building LEGO models develops constructional, 
numerical, graphical and problem solving skills. 
Group work enhances interaction skills. Active 
involvement in the successful completion of 
projects reinforces understanding of concepts and 
encourages further investigation. 

Three-part activity cards supplied with each set 
feature (1) photographs of simple machines from 
real life, (2) step-by-step building instructions for 
simple machine models and (3) photographs of 
an assembled challenge model based on simple 
machines. A teacher guide (available separately) 
contains additional information and teaching 
suggestions. A fully developed Simple Machines 
Curriculum is also available. 

• Simple machines: levers, gears, pulleys 
• Grades three through nine 
• Designed for two students per set 

Simple Machines Curriculum, Item 999, $20.00 
• 102 pages 
• Developed by a team of teachers from the Anoka-Hennepin 

County School District of Minnesota 
• Includes complete lesson plans for in-depth study of simple 

machine concepts 
• Also includes study masters, review sheets and Team Kit 

Care Record forms 



Teacher's Guide to Technic I 
Item 1035, $9.25 
• 48 pages 
• Summarizes principles from 

activity card models 
• Suggests experiments and 

further activities 
• Three group project themes 

Technic I Set 
Item 1030, $45.00 
• 179 elements including 

gears, beams, pulleys, 
wheels, etc. 

• 20 student activity cards 
with step-by-step 
instructions to build 29 
models and photographs 
of 23 additional 
challenge models 

• Storage tray with 
transparent lid 



The LEG()® Thchnic I Activity Center (item 
9603) is designed for classrooms in grades 
3 through 6 using the Thchnic I set 

(item 1030). The center provides exciting student 
activities and detailed teacher support for a wide 
variety of physical science areas. 

The Technic I Activity Center is a flexible product, 
easily organized to suit your teaching needs best. 
The 110 activity cards are separated by activity 
type and are extensively cross-referenced for use in 
six physical science curriculum areas, plus a special 
enrichment section. Activities are easily reorganized 
into topic or theme areas, if desired. 

Activity types include: 
• Explorations 
• Investigations 
• Applications in Problem Solving: 

• Real World Simulations 
• Inventions 

Curriculum areas include: Theme areas include: 
• Forces and Sbuctures • Medieval Castle 
• Levers • The Farm 
• Pulleys • The Harbor 
• Gears • The Amusement Park 
• Wheels and Axles • Getting Around 
• Energy • The Big Race 

The four-color activity cards are accompanied by 
a comprehensive teacher guide, with setup and 
organizing suggestions, detailed comments 
and extension activities for each student card, 
background information about each of the subject 
areas, and a number of copy masters for both 
teacher and student use. 

The activity center materials are housed in a sturdy 
plastic storage container for easy filing and access. 

• Forces and structures, levers, pulleys, gears, 
wheels, energy 

• Grades three through six 
• Contains sufficient activities for one 

classroom equipped with Technic I sets 
(item 1030) 

Special ntrtlttu•~tnli 

Offer! For a limited time, 
you will receive a free 

I Activity Center when you order 
ten {10) or more Technic I sets (item 

1030). Please include a written request for your free Technic I 
Activity Center with your order. This offer is valid for orders 
received between December 15, 1989 and December 15, 1990. 



lklmic I Al:tillitg Center 
Item 9603, $= 
• 110 activity 
• Thacher guides ntainer 
• Sturdy storage co 

10 attract customers, the circus 
owner has asked FtJ tncia to bUild 
a crazy noise-maker. 

Row do .YOu think it llJ.ight Work? Edward and Jenny cannot fig"Ure out 
how to go through the castle gardens. 
They need some help. 



I T he LEGQ® Technic II set (item 1032) is 
designed to follow the Technic I set in the 
instructional sequence. It extends the 

principles of simple machines by adding the concept 
of motorization. With a 4.5 volt electric motor, 
students can bring their projects to life. 

The Technic II set is excellent for the study of 
power transmission. It contains a wide variety 
of power train connectors, such as a chain drive, 
a differential gear system and a universal joint, 
in addition to several sizes of regular gears. 
Supplemental pneumatic elements are also 
available to add even more versatility to the set. 

The Technic II set is growing in popularity with 
teachers of technical education. It is appropriate 
for students from upper elementary through the 
high school grades. The set creates an awareness 
of the progression of technology and deepens the 
understanding of mechanical principles through 
the building of realistic motorized models. 

Building motorized models develops students' 
constructional, numerical, graphical and problem 
solving skills. Group work enhances interaction 
skills. Active involvement in motorized projects 
reinforces an understanding of key concepts and 
encourages further investigation. 

Three-part activity cards supplied with each set 
feature (1) photographs of motorized machines from 
real life, (2) step-by-step building instructions for 
simple motorized models and (3) photographs of 
assembled challenge motorized models. A teacher 
guide available separately contains additional 
information and teaching suggestions. 

• Motorized machines, power transmission, 
technology 

• Grades jour through nine 
• Designed for two students per set 

1 

Teacher's Guide to Technic II 
Iteml036, $9.25 
• 48 pages 
• Summarizes principles from 

activity card models 
• Suggests problem solving ideas 

and further activities 
• Three group project themes 



Technic II Set 
Item1032, $62.25 
• 278 elements including 

chain links, differential gear, 
worm gears, etc. 

• 4.5 volt motor and battery box for 
three "C" batteries 

• 20 activity cards with step-by-step 
instructions to build 40 
motorized models and photographs 
of 30 additional challenge models 

• Storage tray with transparent lid 

Pneumatic elements are available for use with the 
Technic II set (item 1032) or other LEGO Dacta sets to 
introduce another method of controlling moveable parts. 
Elements include a pneumatic hand pump, two-way 
piston, valve, switch and assorted hoses. They are 
compatible with LEGO building elements and can be 
incorporated easily into LEGO Dacta projects. They are 
appropriate for use in technical education classes and 
provide an excellent introduction to the principles of 
pneumatics. For prices and ordering information, please 
see page 23. 



I S 
everal additional Technic items are 
available to supplement instruction with 
Technic I and Technic II sets. These items 

could be provided to students who wish to build 
especially complex projects or who want to extend 
their knowledge in new directions. 

For example, a group of seventh grade students 
studying physical science may want to design and 
build a larger project requiring more elements than 
those available in their Technic II set. In that case, 
the LEGO® Technic Resource Set (item 9605) could 
provide the additional elements needed. 

Or, perhaps a group of eighth grade technology 
students want to build and control a steerable 
motorized transport unit. The Technic Universal 
Buggy (item 1038) could provide the chassis, and 
the Technic I set could be used for the superstructure. 

For controlling more sophisticated motorized 
projects, the Technic Manual Control (item 1039) is 
appropriate. The control panel introduces students 
to the fundamental concepts of control technology 
and serves as an excellent transition device in 
preparing students for computer use. When used 
in conjunction with a computerized LEGO Dacta 
set (see next page), the Technic Manual Control 
provides a supplemental control center. 

LEGO Technic Resource Set 
Item 9605, $160.00 
• 1516 elements, the approximate 

equivalent of two Technic I (item 
1030) and Technic II (item 1032) 
sets plus about 600 additional 
elements 

• Large storage trays 



Technic Universal 
Buggy, Item 1038, 
$50.00 
• 11 7 elements 

including two 
4.5 volt motors 

• Step-by-step 
instructions to 
build two models of 
a steerable chassis 

• Connects to 
Technic Manual 
Control or to 
Technic Control 
computer interface 
box 

Technic Manual 
Control, Item 1039, 
$50.00 
• 39 elements, 

including three 
switch panels 

• Battery box for 
three "C" batteries 

• Controls up to 
three 4.5 volt 
motors 

• Step-by-step 
instructions for 
assembling 
different control 
panels 

13 





LEGO and Logo are alike in many ways. Each is a flexible construction 
set that gives students freedom to explore, to investigate and to apply what they 
learn through building. In one case, the building blocks are LEGO bricks; in the 
other, the building blocks are Logo procedures. In each case, the building 
blocks fit together in simple ways. From combinations of these simple connections, 
complex structures can emerge. 

As powerful as LEGO and Logo are individually, they become much more 
powerful when joined together. When students write Logo programs to 
control their LEGO constructions, they come in contact with important ideas 
such as sequencing and feedback. The two systems reinforce one another; the 
powerful elements of LEGO and Logo create one of the richest environments yet 
for students to explore. The possibilities are as unlimited as a student's imagination. 



I 

I 
I 

I 
I 

• 

The LEGO® TC logo Starter Pack contains all the necessary 
components for setting up a computerized LEGO building 
station in the classroom. 
Item 951 [Apple) $485.001 Item 966 (MS-DOS) $515.00 

What Do I Need To Get Started? 
• Situation: One computer for every 2 to 4 students 

Suggested Order: One LEGO TC logo Starter Pack 
per computer 

• Situation: One computer for every 5 or more students 
Suggested Order: One LEGO TC logo Starter Pack per 
computer (2 to 4 students each) plus additional Technic 
Control 0 sets for remaining student groups 

The Technic Manual Control (item 1039) and the Technic 
Resource Set (item 9605) are excellent supplements to the 
Starter Pack. (See page 13.) 
See page 19 for information on ordering Starter Pack components separately. 

Teacher's Guide 
• 153 spiral bound pages 

Components include: 
• Setup guide 
• Technic Control 0 building set 
• Teacher and student guides 
• Software disks and reference guides 
• Computer slot card 
• Interface box. 
(Computer not included.) 

• Computer controlled models: traffic light, 
car, starting gate, conveyor belt, carousel, 
washing machine, robot turtle 

• Science, mathematics, social studies, 
technology 

• Grades four through twelve 
• Designed for two to four students per set 

• Curriculum correlations for science, 
mathematics, social studies and 
computer activities 

Setup Guide 
• 13 cards with step-by-step 

instructions on setting up the 
components of the Starter Pack to 
operate with a computer 

• Teacher tutorial 
• Classroom management suggestions, 

lesson plans and activities Reference Guides 
• The LEGO TC 

logo Reference Guide 
is a 134-page manual 
giving complete 
explanations 
and examples of all LEGO 
TC logo comands. 

• The LEGO TC logo Quick Reference 
Guide summarizes the most 
frequently used commands in a handy 
format. 

Student Guides 
• Two copies each of three student 

guides 
• Getting Started, a 57-page beginner's 

guide 
• Making Machines, a 30-page 

intermediate guide 
• Teaching the Turtle, a 32-page more 

advanced guide 



Software 
• Two copyable disks containing the LEGO TC logo 

computer language, including four screen turtles, 
simple word processing and printer interface 
capability. 

• Apple: One write-protected master disk, one 
operating disk, both in 51/4" format, or 

• MS-DOS: One 51/4" master disk, one 31/z" 
master disk 

Technic Control 0 set 
--::-- • Over 450 building elements, including bricks, 
~ beams, gears, and wheels 

• Computer control elements, including two touch sensors, one 
optosensor, one counting wheel, two motors, and four lights 

• 8 student activity cards with step-by-step instructions to build 8 
computer controlled models and photographs of 6 
additional challenge models 

• Carrying case with two storage trays 

Interface Box and Transfonner 
• The interface box includes 

six output ports, two input 
ports and one test port, and 
independently controls up 
to three motors or six light 
bricks and two sensors. 

• The transformer provides 
electrical power to the 
interface box and plugs into 
standard electrical sockets. 

Slot Card 
• Apple: Slot card and cable 

for Apple lie or Apple Ilgs, 
or other Apple compatible 
computer, or 

• MS-DOS: Slot card and cable 
for IBM PC, IBM PS/2, 
Tandy® 1000, or other 
MS-DOS compatible 
computer 



I 
I 

Typical 
Activity 

Motorized Car 

Traffic Light 

Merry-Go-Round 

Washing Machine 

Robot Turtle 

LEGO® TC logo connects with 
curriculum areas such as: 

Science Mathematics 
Concepts Concepts 

Forces 
Motors, Electricity 
Gears Time-rate-distance 
Mechanical advantage 
Programming 

Light 
Color Codes 
Animal senses Binary arithmetic 
Machine sensors Recursion 

Circular motion Circles 
Centrifugal force Fractions 

Time/clocks 
Logic 

Using sensors for safety Time 
Codes 

Motion Measurement 
Time-rate-distance Angles 
Robots Ratios 
Simulation Calibration 

LEGO® TC logo users ... 
join The LEGO DACTA CONNEXION™ Free 

I T
he LEGO DACTA CONNEXION is the user group for 
LEGO TC logo. To join, just fill out the registration card in 
your LEGO TC logo Starter Pack and mail it in. Three times 

each school year, a special mailing is sent to all members. Each mailing 
includes exciting new LEGO TC logo activities for students with corres
ponding teacher guide pages, and the current issue of The LEGO 
DACTA CONNEXION newsletter. Each issue contains curriculum ideas, 
feature articles on significant LEGO TC logo projects and events, hints 

Social Studies 
Ideas 

History of machines 
Transportation 
History of the computer 
Uses of computers 

Communication 

History of entertainment 

Automated house 
House of the future 
History of household 
chores 
Product safety 

Machines vs. animals 
Animal behavior 

and tips for users, local and global news about innovative projects, and a calendar of LEGO TC logo related conference 
presentations, workshops and courses. Special coupons are often included for members only, offering extra savings 
on LEGO Dacta purchases. To promote communication among members, a directory of the names and addresses 
of LEGO DACTA CONNEXION members is included in the fall mailing. 



LE~ TC logo Starter Pack Components 
Combinations of the LEGO TC logo Starter Pack components 
are available for separate purchase as shown below. 

Technic Control 0 Set 

Slot Card Pack 
Item 955 [Apple] $145.00 
Item 965 [MS-DOS] $145.00 
Contains computer slot card, cable, LEGO TC logo 
software, Reference Guide and Quick Reference 
Guide. To establish a LEGO TC logo computer 
station, you will also need the Interface Box & 
Transformer [item 9750 below]. 

Reference Guide Pack 
Item 957 [Apple] $15.00 
Item 967 [MS-DOS] $15.00 
Contains one copy of the 
LEGO TC logo Reference 
Guide and the Quick 

Item 9700 $142.00 
Contains over 450 LEGO 
elements, including bricks, 
wheels, pulleys, gears, 
motors and sensors, enough 
for one building station, 
appropriate for 2 to 4 
students. Also includes 
eight sets of building 
instructions for LEGO 

r----- Reference Guide. 

TC logo projects. ------... 

Interface Box & Transformer 
Item 9750 $170.00 
Contains the interface box, 
with input, output and test 
ports, and a transformer to 
provide electrical power. The 
cable from the computer slot 
card connects to one end of 
the interface box. Motors, 
lights and sensors connect 
to the various ports. LEGO TC logo Software and Literature 

Item 952 [Apple] $110.00 
Item 962 [MS-DOS] $115.00 
Contains LEGO TC logo software, Reference 
Guide, Quick Reference Guide, Teacher's Guide and 
two copies of the three student guides. Sturdy 
storage box included. 

Teacher's Guide 
Item 953 [Apple] $12.50 
Item 963 [MS-DOS] $20.00 
One copy of the 153-page 
LEGO TC logo Teacher's 
Guide. 

Student Guides 
Item 954 [Apple] $22.25 
Item 964 [MS-DOS] $22.25 
Contains two copies 
of three LEGO TC 
logo student guides: 
Getting Started, Making 
Machines and Teaching 
the Turtle. 



• 
I 
I 

: I 
20 

I T he Technic Control I set (item 1090) 
provides junior high and high school 
students with a hands-on learning 

environment to understand better the role of 
computers in today's technology. This set is 
designed for more advanced projects than the 
Technic Control 0 LEGQ® TC logo set. Students 
can explore, investigate and apply mechanical 
principles, computer programming and fundamental 
control technology as used in real world situations. 
Experiments with programming and feedback 
enable students to form an in-depth understanding 
of control technology and information transfer. 

• Computer controlled machines: robot arm, 
conveyor belt, automatic door, ferris wheel, 
washing machine 

• Robotics, artificial intelligence, 
engineering, technology education 

• Grades seven through twelve 
• Designed for two students per set 

Technic Control I, Item 1090, $138.00 
• 404 elements, including two 4.5 volt motors, two 

optosensors and two counting wheels 
• Step-by-step instructions to build five computer 

controlled models 
• Storage tray with transparent lid 
• Requires computer interface hardware and 

software available separately (see page 19). For 
Apple computers, either the Apple LEGO TC logo 
Starter Pack (item 951), or the combination of the 
Apple Slot Card Pack (item 955) and the Interface 
Box (item 9750). For MS-DOS computers, either 

the MS-DOS LEGO TC logo Starter Pack 
(item 966), or the combination of the 

MS-DOS Slot Card Pack (item 965) 
and the Interface Box (item 9750) . 



I T he Technic Control II set (item 1092) is 
especially appropriate for advanced junior 
high and high school students. The set 

focuses on the use of computerized control technology 
and advanced programming skills to design, build 
and operate scientific instruments for taking 
measurements and displaying data. Students can 
use these instruments to explore and investigate the 
physical world. They can apply the principles of 
instrument design and control technology to create 
even more complex instruments of their own. 

• Computer controlled machines: plotter, 
height measuring device, caliper, rotating 
base and two traffic lights 

• Robotics, scientific measurement, 
technology education 

• Grades seven through twelve 
• Designed for two students per set 

Technic Control II, Item 1092, $195.00 
• 458 elements, including three 4.5 volt motors, two 

optosensors and two counting wheels 
• Step-by-step instructions to build five computer 

controlled models 
• Sturdy blue carrying case with two trays 
• Requires computer interface hardware and 

software available separately (see page 19). For 
Apple computers, either the Apple LEGO® TC logo 
Starter Pack (item 951), or the combination of the 
Apple Slot Card Pack (item 955) and the Interface 
Box (item 9750). For MS-DOS computers, either 
the MS-DOS LEGO TC logo Starter Pack (item 
966), or the combination of the MS-DOS Slot Card 
Pack (item 965) and the Interface Box (item 9750). 



I 

~~·c~:~~::-~;-~i:~~ :_:: ~' 

' I 
ll 

: I 
I 

$10.25 TECHNIC I Activity 
Card Pack 

$10.25 TECHNIC II Activity 
Card Pack 

$16.50 304 extra bricks 

0069 
$25.00 Making Connections 
is the product of an 
award-winning relationship 
between educators in St. Paul 
schools and the Science 
Museum of Minnesota. The 
book is a 160-page teacher's 
guide for LEGO TC logo with 
34 creative lessons, four 
student-designed project 
ideas, a sample integrated 

22 unit for social studies and 16 
physical science worksheets. 

Spare part support services and technical specifications 
1314 
$7.25 

1315 
$4.25 

1316 
$6.35 

1317 
$17.75 

1318 
$4.75 

1319 
$4.75 

1321 
$5.85 

1322 
$7 .15 

1323 
$4.75 

1324 
$7.25 

1325 
$4.75 

1326 
$4.25 

• 
150x 60x 

50x 

150x 

c 
350x 

50x 10x 8x 

14x ax 

• 30x 

2x 

12x 
10x 

0 
12x 

0 
12x 8x 

1x &_:<) 

G oo 
30x 40x 

.. ;;"L -
30x 24x 14x 

-14x 

1327 
$3.20 ~~ ............ 

12x 12x 12x 12x 

Stop bush- gray 

Small pulley-gray 

Piston rod - gray 

Connector peg - gray 

Chain hnk - black 

Gear wheel (8 teeth)- gray 

Gear wheel (16 teeth) - gray 

Crown wheel-gray 

Gear wheel (24 teeth)- gray 

Gear wheel (40 teeth)-gray 

Differential house- gray 

Bevel gear - gray 

Worm - gray 

Gear rack 

0-ring (tire) 20.2mm x 
3 .5mm - black 

Pulley wheel24mm - gray 

Steering wheel-gray 

Spoked hub 

Tire - black 

Tractor tire 

Rubber band. small- black 

Rubber band. med•um-black 
Rubber band. large-black 

Stnng - black 

Cross axle, 4-studs long

Cross axle, 6-studs long

Cross axle, 8-studs long-
black 

Cross axle, 10-studs long
black 

Cross axle, 12-studs long
black 

Plate 1x3 studs- red 

Plate 1x3 studs- black 

Plate 1x4 studs - red 

Plate 1x4 studs - black 

8x 8x 8x 

1329 
$3.20 .. ~~ 

8x 12x !lx 

1330 

8x 4x 8x 

1331 . .. ...... 
$7.40 ., ~ 

2 4x 24x 24x 16x 

1332 
$4.25 

1334 
$28.00 

1335 
$11.90 

1336 
$5.85 

1337 
$10.00 

1338 
$7.25 

1339 
$5.85 

8x 

8x 

1340 
$4.75 -

8x 

2x 

6x 

12x 20x 

• 
4x 8x 

8x 2x 

8x 

Plate 1x6 studs - red 

Plate 1x6 studs - black 

Plate 1x8 studs - red 

Plate 1x8 studs - black 

Pla te 2x3 studs - black 

Plate 2x4 studs - black (w1th 
holes) 

Plate 2x4 studs - red (Wi th 
holes) 

Plate 2x6 studs - red 

Plate 2x8 s tuds - red (w•th 
holes! 

Plate 2x8 studs - black (w1th 
holes) 

Bnck lx 2 studs - blue 

Bnck l x2 studs - red 

Bnck l x4 studs - blue 

Bnck 1x4 studs - red 

Bnck lx6 studs - blue 

Bnck 1x6 studs - red 

Bnck 1x8 studs- blue 

Bnck lxB studs - red 

Bnck 1x12 studs-blue 

Bnck 1x12 studs - red 

Techn•c Motor 4 .5 volts 

Battery box 

Pole reverser sw1tch for 
battery box 

Connect1ng lead 

Angle plate 2x2 studs- blue 

Sw1vel plate 1x2 studs-blue 

Swivel beanng 1x2 studs-
blue 

Turntable - blue/gray 

Un1versal JOint- gray 

P1ston head 

Plate 2x2 studs round - red 

Bnck 2x4 studs- red 

Bnck 2x4 studs- blue 

We1ght element (6x2x2) 
studs - red 



1345 
$5.85 

lOx ~ 6x 

-~ 6x 

~~ 

P1n1on - gray 

Connector peg w1th stud - 51 06 
gray $3.69 

Nut - gray 

Connector peg wt th cross 
axle - gray 

Connector peg w1th fnctton -

1x 1x 

Two·way valve 

Non-return valve 

4x • 
12x 10x 

~=k 5107 
Cross axle , 2 studs long - $2 .02 

black 

Cross axle, 3 studs long 
black 

~ 1x 

Pneumatic spnng 
pump 

2x 

Cross axle wi th thread , 4 
studs long - b lack 5108 

$2 02 ~ 
PneumatiC cylmder 

954 $22.25 Apple 
964 $22.25 MS-008 

LEGOTC logo 
Student Guide Pack 1x 

Touch sensor 1346 
$15.00 

2x 

5109 ~ Pneumatictub1ng 

$2.02 '-- y ./ 

Technical Information 
LEGO Dacta slot cards are available for the Apple Ile, Apple Ilgs, 
and compatible computers, and the IBM PC and other MS-DOS 
computers. The cards are designed to transmit and receive data in 
a parallel fashion , and include onboard counters and timers. 

The LEGO Dacta interface box works with all supported computers. 
It rests outside the computer and connects via a ribbon cable to a 
slot card installed inside the computer. A separate transformer 
supplies the voltage for lights and motors. The interface box is 
designed to a high standard of safety. For example, it is optically 
isolated from the computer power supply, thus protecting all users 
from the possibility of electrical injury. In addition, the circuits 
of the interface box cannot be damaged by students connecting 
motors, lights or sensors incorrectly. Finally, an onboard emergency 
STOP button provides students with a positive immediate method 
of turning off electrical power to all output slots if necessary. 

1x 1x 

The LEGO Dacta touch sensor consists of a special brick containing 
a spring-loaded on I off switch and a smooth protrusion which acts 
as a pushbutton. 

The LEGO Dacta optosensor functions as a binary electromagnetic 
radiation sensor, and is sensitive to sharp changes between dark 
and bright conditions over a broad spectrum of radiation frequencies, 
including visible light and infrared radiation. For example, the 
sensor reacts to interruptions in a light beam shining on it. The 
optosensor also responds to the movement of a counting wheel by 
sensing changes in radiation emitted from an on-board infrared 
source and reflected by the black and white sectors of the wheel. 

The LEGO Dacta 4.5 volt motor operates on direct current 
supplied from three "C" batteries or from the computer interface 
box. It uses approximately 0.1 amp and runs at approximately 
6000 r.p.m. when operating with no load. When stalled, the motor 
uses approximately 1 amp. 23 



J'till' .• iilt418U:ulty obtainiilg fund$ mr purcbasiDg LEGO Dacta products? Consider writing a 
JmlilitJJI!OPDsai to a local or national funding agency. Once you have identified a funding agency with 
an appropriate grant program, LEGO Dacta can provide free grant proposal preparation assistance, 
includiug pmgnun suggestions, review of draft proposals, writing assistance for equipment and 
training sections of proposals, and professional literature references. For first-time grant proposal 
writers, a free tip sheet is available on request 

Would you like to see LEGO TC logo in action? LEGO Dacta has an introductory 16-minute videotape 
on LEGO TC logo available free to educators on a loan basis. 
Literature. 
Do you need extra copies of this brochure to distnbute to your colleagues or to supplement handouts 
at a workshop or conference presentation? Additional copies are available free. 
Spare Parts. 
Are your students asking for additional motors, sensors or gears so they can build a more 
sophisticated project? Over 30 different spare part sets are available for purchase separately. 

LEGO Dacta is now a national corporate sponsor of INVENT AMERICA!, a 
ee;e;~;lal nationwide educational program and invention competition for K-8 students. 

INVENT AMERICA! and LEGO Dacta are working together to help schools and 
teachers discover how LEGO products can be used as an integral part of the creative process. For 
more information on the INVENT AMERICA! invention competition, write to: INVENT AMERICA!, 
U. S. Patent Model Foundation, 510 King Street, Alexandria, VA 22314, or call (703) 684-1836. 

LEGO Dacta 
555 Taylor Road 
Enfield, CT 06082 
1-800-527-8339 

LEGO • and the LEGO Logo • are registered trademarks of JNTERLEGO A.G. LEGO DACIA CONNEXION'' is an exclusive trademark of INTERLEGO A.G. IBM is a registered 
trademark of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation. Apple is a registered trademark of Apple Computer, Inc. 
Tandy is a registered trademark of Tandy Corporation. © 1989 LEGO Group 



,--------------·-------------------------------., 
April1990 ------L 0 G 0 EXCHANGE -----a .. ~ Page 17 

could turn into the turtle shapes and colors that they 
describe, and be piloted around the screen. 

• A display of piano keys could be used to sound out and 
automatically record single-note melodies. 

The list of potential applications for a simple Logo interface 
seems endless. 

Keep in Touch 
The power of this Logo-to-graphics-pad connection 

made itself apparent when I designed a 12-disk set of materials 
for a local teacher of young physically and mentally chal
lenged people. I imported many pictures from Print Shop 
graphics, and made a set of Logo Touch Window programs in 
four levels of difficulty that help users to refine gross motor 
movements. You are welcome to use these public domain 
programs, too. Send 12 blank disks (or 6 double-notched 
blank disks) in a self-addressed. sufficiently stamped disk 
mailer to the address at the end of the article. I will copy the 
materials onto the disks and return them to you. 

If you are curious about how to use Print Shop graphics 
in Logo programs, or Logo pictures in Print Shop creations, 
please refer to my September 1988 "Logo LinX" article, 
"Secular Conversions," in Logo Exchange. 

If you are interested in learning more about controlling 
peripheral devices such as speech synthesizers and videodisc 
players with Logo, or accessing other input devices such as 
temperature or light sensors with Logo, the following articles 
may be helpful. 

References 
Barclay, T. (1987). To graph a pro~Logo in the science lab. 

The Computing Teacher, 14(8), 30-32. 
Bull, G., Bull,G.,Lough, T.,Harris,J. andWissick, C. (1988). 

Logo connections: An open architecture for Logo. Logo 
Exchange, 6(8), 13-16. 

Bull, G. & Cochran, P. (1987). Science and sensors. Logo 
Exchange, 5(5), 9-11. 

Bull, G. & Cochran, P. (1987). Science and sensors II. Logo 
Exchange, 5(6), 9-11. 

Cochran, P. & Bull, G. (1986). Touch tools. Logo Exchange, 
5(4), 18-20. 

Harris, J. (1988). Secular conversions. Logo Exchange, 7(1), 
pages undetermined at press time. 

Productbfonnation 
"Animation Station," Suncom, Inc, $99.95 
"KoalaPad," Koala Technologies, $125.00 
••Touch Window," Personal Touch Corp., $199.00 

Note: A previous version of this article appeared as the 
November 1988 •1-ogo Center" column in The Computing 
Teacher. 

Judi Harris 
621F Madison Avenue 

Charlottesville, VA 22903 
CIS: 75116,1207 

BitNet: JudiH@Virginia 



Page 18 -----LOGO EXCHANGE---~~ April1990 

edited by 
A. J. (Sandy) Dawson 

Given that this issue of LX is devoted, in some sense, to 
experts,itseemsparticularlyappropriateforJimKingtomake 
his second appearance here this year. The Babylonian Turtle 
that Jim inttoduces below challenges Logo and mathematics 
experts to solve several cases involving wayward turtles. 
Read on, but be sure to stop along the way to exercise your 
Sherlock Holmes capabilities in fmding the solution to Jim's 
Logo Mysteries. 

The Case of the Babylonian Turtle: 
A Logo Mystery 

by Jim King 

A series of mysterious events has taken place: 

• A usually reliable turtle sets off to draw a regular polygon 
but does not return to its starting point. 

• A turtle sets off for a spot on the opposite side of the screen, 
but misses its destination. 

• A scientific turtle conducts experiments to find the value of 
pi, but the results do not agree with theoretical predictions. 

N-gons and the Babylonians 
When we begin to draw polygons in turtle geometry, we 

are naturally attracted to polygons like the triangle, the square, 
the pentagon, the hexagon, and the octagon, all of which can 
be drawn by a repeated sequenceofFORW ARDs and turns by 
anintegernumberofdegrees: 120,90, 72,60,45. Many other 
regular polygons with N sides, or N-gons, require a tum that 
is not an integer number of degrees: the heptagon (the 7-gon, 
which requires a tumof36C>n =513n degrees), the 11-gon, 
and the 16-gon are examples. Since the tum required to draw 
an N-gon is the quotient of360 divided by the number of sides 
N. the tum is an integer only when N divides 360 without 
remainder. 

From the mathematical point of view, it is important to 
note that this distinction between N-gons that have integer 
tmns and those that do not is an artificial one rather than a basic 
phenomenon of geometry. This artifact depends on how we 
measure angles. We still follow the scheme invented by the 
Babylonians; they measured angles by dividing a circle, or a 
complete tum, up into 360 parts called degrees. If the 
Babylonians had chosen to divide the circle into 350 units 
called zorts, then the heptagon would be drawn with a tum of 
50 zorts but the triangle would require a tum of 116 2/3 zorts. 
So the division ofN-gons into "nice" ones with integer turns 
and "not-so-nice" ones with non-integer turns would have 
given completely different results. 

Thus, if we write a Logo procedure like this, it should 
draw a polygon for any positive integer input, not just the ones 
that divide 360 evenly. 

TO NGON :N :SIDE 
REPEAT :N [FD :SIDE RT 360/:N] 
END 

However, if you actually try this with certain versions of 
Logo, the turtle does not come back to where it started. For 
example, if the turtle is at the home position and if you draw 
a heptagon by NOON 7 60 with ffiM Logo, the fmal position 
of the turtle is [0.52 0.421]. Why is this so? 

You can't get there from here 
Here is the second mystery. Suppose the turtle is at [0 0]. 

The following sequence of commands should move the turtle 
to [50 120] and print 50 120; but in ffiMLogoand some others, 
what is printed is 48.698 120.532. (Notice that the distance 
from [0 0] to [50 120] is the square root of 5()2 + 1202 = 130, 
by the distance formula in the (x,y) plane.) 

HOME 
SETH TOWARDS [50 120] 
FORWARD 130 
PRINT POS 

Compare this with the result of HOME SETPOS [50 
120]. The difference is quite visible on the screen. Why does 
this happen? Does it happen with the version of Logo that you 
use? 

Semicircles and pi 
The following procedure was suggested as a way of 

estimating the value of pi. 

TO EST.PI :N :SIDE 
PU 
SETPOS [-125 0] 
SETH 0 
PO 
SEMI :N :SIDE 
PRINT SENTENCE [ESTIMATE OF PI • CIRCUM/ 

DIAM- ] 2 * :N * :SIDE/(XCOR + 125) 
END 

TO SEMI :N :SIDE 
REPEAT :N [RT 90/:N FD :SIDE RT 90/:N] 
END 

The idea is that the turtle should start at [ -125 0]. pointing 
upward, and draw a ''Logo semicircle," half a 2N -gon. The 
semicircle is drawn by REPEAT :N [RIGHT 90/:N FOR
WARD :SIDE RIGHT 90/:N] rather than REPEAT :N 
[FORWARD :SIDE RIGHT 180/:N] so that the half 2N-gon 
will end up on the x-axis where it began. The difference 
between these two versions of the half2N-gon is illustrated in 
the figure below for N = 3. 



Apri11990 -----LOGO EXCHANGE---~~ Page 19 

It was understood that round-off error would become a 
problem for very large values of :N, but the idea was to 
experiment to see which value of :N would give the best 
estimate for pi. 

What happened, however, is that the Logo semicircle was 
tilted for some values of :N. For example, using Logo Writer 
2.0 for the Apple II, with :N = 4 and :SIDE = 80, the final y
coordinate of the turtle was -1.824 3. This is a rather large error 
for 4 steps. On the other hand EST.PI 5 80 results in a y
coordinate of 0 as it should, although one would expect the 
round-off error to be about the same for both :N = 4 and :N = 
5 since the number of sides is about the same. 

Round off the usual suspects 
Your first reaction to this may be, as mine was, "round

off error." Round-off error is the error that inevitably occurs 
when we try to compute with numbers that have infinite 
decimal expansions. Since the computer can only work with 
a finite number of decimal places, every arithmetic operation 
yields a small error; after many operations, this error can 
become quite significanL 

But this does not explain the mystery here. First of all, the 
round-off error for integer and non-integer angles should be 
about the same; for even when the number of degrees in the 
turn is an integer, the (x,y) coordinates of the positions are 
irrational numbers subject to round-off error. Put the instruc
tion PR POS inside the REPEAT of NOON to see this. 

Also, Logo works using a fairly large number of signifi
cant digits. In the heptagon example, for instance, if at each 
step there were a round-off error in the sixth decimal place, an 
error of less than 0.00001, then after seven steps the error 
could not be more than 0.00007. This could not account for 
the large observed error. 

Babylonian turtles 
It turns out that the problem is that, for some brands of 

Logo, the turtles are Babylonian. If you ask them the HEAD
ING, they will tell you to several decimal places, but when you 
tell then FORWARD, they round the heading to the nearest 
integer before going FD. In other words, SETH 0 RIGHT 42 
FORWARD 100 and SETH 0 RIGHT 42.4 FORWARD 100 
give the same position. "Position" here does not only mean 

the relatively crude measure of position given by the pixels on 
the screen, but also the value of POS, which Logo uses to 
determine where the turtle goes next if it is given another 
FORWARD command. 

Interestingly enough, the heading is not rounded, so the 
sequence of commands SETH 0 RIGHT 42.4 FORWARD 
100 RIGHT 12.4 FORWARD 10 draws the same path as 
SETH 0 RIGHT 42 FORWARD 100 RIGHT 13 FORWARD 
10 even though 12.4 does not round to 13, because for the first 
FORWARD, the heading is 42.4, which is rounded to 42, but 
for the second, the heading is 54.8, which is rounded to 55; it 
takes a RIGHT 13 to tum from a heading of 42 to a heading of 
55. 

This explains what happened to the heptagon. The value 
of the heading that the turtle is using for the FORWARD is 
much less accurate than we thought, with no significant 
figures to the right of the decimal point. Once we realize this, 
it is not smprising that the error is as large as it is. 

The second problem with SETH TOWARDS has the 
same explanation. The turtle is going in the direction of an 
integer heading, not the true one. 

In drawing the semicircle in the pi estimation experiment, 
if there is an error in the initial turn, the whole semicircle is 
rotated by that amount (and the semicircle is notreallyregular, 
since its angles are not all the same). 

Why are some turtles Babylonian? 
I have not asked the programmers who wrote various 

versions of Logo, but it seems pretty clear why one might 
choose to make the turtle Babylonian instead of accurate
speed. Computing where the turtle will end up after a FD 
command involves computing sines and cosines, which is a 
fairly slow process. If you only have 360 angles to deal with, 
you can store the values of the sine and cosine in a table and 
look them up without having to compute them each time. 
Since the Logo turtle can seem pretty slow, this is one way to 
get it moving along at a brisker pace, but at the price of 
accuracy. 

How can I get an accurate turtle? 
Brian Silverman has created a very interesting mi

croworldcalled Broken Logo. In this microworld he alters the 
behavior of the turtle commands so that the turtle behaves 
differently from what one expects. Silverman then challenges 
the microworld explorer to fix up the turtle so it behaves 
properly again. 

Amusingly enough, many versions of Logo, unbe
knownst to its users, are already a form of broken Logo. How 
can we ftx the Babylonian turtle so that it becomes an accurate 



Page20 -----LoGo ExcHANGE -----a~~· AJXil1990 

turtle? Since Logo is extensible, we just define a command 
CFD (for Correct FD). 

TO CFD :DIS 
SETPOS LIST (XCOR + :DIS * SIN HEADING) 

(YCOR + :DIS * COS HEADING) 
END 

TO CBK :DIS 
CFD -:DIS 
END 

If your Logo has SETXY but not SETPOS, then define 
CFD using this line in the definition: 

SETXY (XCOR + :DIS * SIN HEADING) (YCOR + 
:DIS * COS HEADING) 

We can see that this is the correct new position from the 
following figure. Unfortunately, when this CFD command is 
computed using an interpreted Logo, it is much slower than 
the usualFORW ARD. (Perhaps it would be betternamedSFD 
for SLOW FD.) 

Dsin H r-----. [x+Dsin H, y+Dcos H) 

Dcos H 

[x, y] 

One thing CFD is good for is to test turtles for Babylonian 
tendencies. Get out your favorite Logo and see whether FD 
and CFD have approximately the same result 

Are Babylonian turtles a serious problem? 
For most purposes, the errors introduced by Babylonian 

turtles are not serious. People tend to use a lot of integer turns 
in Logo, and errors do not appear in this case. Also, unless the 
computer has good graphics, some of the errors are not visible 
on the screen. CFD is so slow that one wants to avoid using 
it as much as possible. Nevertheless, it is good to be aware of 
what is really is going on with one's turtle in case the turtle 
seems to develop mysterious ailments. In my own case, for a 
certain project I wrote a set of procedures that used SET 
TOWARDS and then FD many times and was mystified by 
the strange behavior of the turtle until I discovered its guilty 
secret 

It would be interesting to make a list of which 
versions of Logo have Babylonian 
turtles and which do not. As I have 
indicated, IBM Logo and LogoWriter 2.0 for 

the Apple n fall into the Babylonian camp. On the other hand, 
Object Logo and Terrapin Mac Logo do not. 

As Logo continues to grow up and as computers get faster 
and more powerful, it seems a better choice to be given an 
accurate turtle instead of a Babylonian one. In any event, 
designers of Logo would do their users a service if they would 
document what their software really does. 

Puzzles and Projects 
• Even though 16 does not divide 360 evenly, the 16-gon 

drawnbyaBabylonianturtlewiththeinstructionNGON16 
60 closes up exactly (i.e., the fmal position of the turtle is [0 
0]. Why is this so? Can you find other cases of this nature? 

• If your version of Logo has an accurate turtle rather than a 
Babylonian one, how can you simulate a Babylonian turtle? 
In other words, define a procedure BFD :DIS that will cause 
the turtle to do what a Babylonian turtle would do when 
given the instruction FORWARD. 

• Carry out the pi-estimation experiment both with FD and 
with CFD. What are your results? 

• Define a distorted version of CFD this way: 

TO DFD :DIS 
SETPOS LIST (XCOR + 2 * :DIS * 

END 

SIN HEADING) (YCOR + :DIS * COS 
HEADING) 

Compare what happens when you draw a Logo circle (an 
N-gon with large N) using regular FD, or by substituting CFD 
or DFD for the FD in the definition ofNGON. What happens 
when you replace the 2 in the definition of DFD with other 
numbers? What happens if you put a number in a comparable 
place in the second coordinate of the SETPOS? 

Note: mM (mM Corp.), ffiMLogo (IBM Corp.), Apple 
IT (now LCSI Logo IT, LCSI), Logo Writer (Logo Computer 
Systems), Terrapin Mac Logo (Terrapin, Inc.), Object Logo 
(Apple Computer Corp.) are trademarks. 

James King 
Department of Mathematics GN-50 

University of Washington 
Seattle, WA 98195 or via E-mail as 

king@math.washington.edu 

A. J. (Sandy) Dawson 
Faculty of Education at Simon Fraser University 
Vancouver, Canada. He can be reached through 

Bitnet as userDaws@SFU.BITNET 



Aprill990 -----L 0 G 0 EXCHANGE -----11,.~· Page 21 

by Horacio C. Reggini 

Introduction 
I believe that the use of computers as a medium of self

expression-a medium for exploring, testing, creating, realiz
ing, understanding-is the main reason for introducing com
puters in education. In this article. I use the computer for the 
description and generation of three-dimensional shapes. 

We can give students an active role as .. shape-builders," 
allowing them an intellectual excursion into the field of 
creation and manipulation of three-dimensional shapes. The 
aim is to stimulate and encomage the exploration of the 
structure and composition of geomettical shapes. Model 
building with all kinds ofblocks is recognized by educators as 
a valuable part of education, but unfortunatelly it is usually 
restricted to young children. Model building- both hands
on and conceptual- should be a central part of educational 
goals. Computer model building with 3D-Logo shares impor
tant characteristics of both aspects, and leads students to 
important questions about the geometrical principles of forms 
from nature and from human design. By teaching the com
puter how to produce three-dimensional objects, students may 
also achieve greater understanding of the aesthetics and 
complexity of shapes in space. 

Creation of three-dimensional shapes 
The perception of the space around us is a concept 

difficult to grasp. For a child, learning to know the spatial 
world outside his own skin is an experience that lasts many 
years. 

There are many ways of describing an object in space. 
We know that the global geography of space can be inferred 
just from hints about which pairs of points lie near one 
another. A similar concept underlies the simple method I 
explain here: an object can be described and generated by 
starting from any of its points and demonstrating the move
ments necessary to trace its contoms. This geometrical 
description makes no reference to any external element, but it 
is intrinsic to the object itself. 

Let us imagine our hand, open and extended, following 
the edges of a three-dimensional object The command 
1RA VEL designates the movement of the hand along the 
direction of the fingers. I call VEER, PITCH, and ROll. the 
following rotations of the hand. 

VEER is the rotation in the plane of the palm of the hand; any 
two-dimensional shape can be totally defmed, therefore, 
just with successive commands 1RA VEL and VEER. 

PITCH is the rotation similar to turning the hand down or up 
by deflecting the wrist. 

ROll. is the rotation corresponding to a corkscrew move
ment 

If we compare our hand, placed in a horizontal position, to a 
ship, then VEER will correspond to a change of heading, 
PITCH to the stem-bow oscillation, and ROLL to the port
starboard movement In international aeronautical language, 
the movement corresponding to VEER is called YAW, while 
the names of the other movements are the same. 

In this way, the TRAVEL 
commands just ex
plained allow the de
scription of any object 
following the move
ments necessary to trace 
its contours. 
This de
scription is 
stored in the 
computer as 
aprogramor 
procedure 
with a name. 
Using this name as a com
mand causes the proce
dure to beexecutedand the 
perspective drawing of the 

ROLL 

VEER 

described object is displayed on the computer screen. 

The commands 1RA VEL and VEER are equivalent to 
the well known FORWARD and LEFT of the classical two
dimensional Logo. This intrinsic, natural way of working out 
geometrical problems has been called "turtle geometry" or 
"turtle language," because lines are made as if a turtle exe
cuted them. When making the turtle move we externalize our 
idea about how to create a form. Moving according to the 
itinerary imposed by the procedure, the turtle leaves a trail or 
a mark, thus creating the desired shape. 

In three-dimensional Logo the concept of corporal sin
tonicity, one of the powerful ideas elaborated by Papert for 
two-dimensional Logo, is still valid. I have talked about the 
movements of the hand instead of talking about a turtle, which 
in space, would have to be an aerial or aquatic turtle, but the 
idea of manipulating an .. object-to-think-with" remains. We 
learn to think in a rigorous but, at the same time, corporal and 
intuitive way, and we use mathematics like a natural language. 



Page22 ------L 0 G 0 EXCHANGE ----...a~~· April1990 

Some elegant and graceful shapes 
The following pages show several simple examples of 

how to defme objects using three-dimensional Logo. To 
begin, let us first define a small rectangular piece 8 x 64, called 
PLA1E, which will be the essential building block to create 
more complex designs: 

TO PLATE 
PO 
TRAVEL -32 
PD 
REPEAT 2 [TRAVEL 64 VEER 90 TRAVEL 8 VEER 

90] 
PO 
TRAVEL 32 
PO 
END 

The PLA 1E is generated start
ing from the middle point of one of 
the longer sides of the rectangle and PLA 1E 
ending at the same point. This point 
-as we will see later-will be a kind 
of joint for successive adjacent PLATEs. We can think of 
PLA1E as a thin flat narrow piece of metal. As a jeweller, we 
will assemble them, building up different designs. 

1. Let us combine several PLA 1Es, shaping a kind of strip 
on the plane: 

PLANAR.RIBBON 

TO PLANAR. RIBBON 
REPEAT 30 [PLATE MOVE.l] 
END 

TO MOVE.l 
PO 
VEER 90 
TRAVEL 8 
VEER -90 
PO 
END 

MOVE.l is the procedure that tells the procedure 
PLANAR.RIBBON how to assemble the PLA1Es. 

Note that the procedure MOVE.l moves the turtle 8 
units to the left without leaving any trail, because we have 
moved it in the PENUP state (abbreviated PU). With the 
command PENDOWN (abbreviated PD), the turtle again 
leaves a trail while moving. 

2. Suppose that now we add a ROLL movement to 
MOVE.l, thus defining a new procedure for joining 
PLA 1Es which we call MOVE.2. So, we create a kind 
of round strip, no longer on the plane but in the space. 
The resulting object is similar to a cylinder or circular 
band: 

CIRCULAR.RffiBON 

TO CIRCULAR.RIBBON 
REPEAT 12 0 [PLATE MOVE. 2] 
END 

TO MOVE.2 
MOVE.l 
ROLL -3 
END 

Note that the procedure MOVE.2 adds to the proce
dure MOVE.l a ROLL angle 3 to the right. So as to 
complete a circle, we REPEAT 120 times the commands 
[PLA 1E MOVE.2]. 

The construction procedure CIRCULAR.RIBBON 
creates the shape as a swn of PLA1Es. We suppose that 
each PLA 1E is of a transparent material with opaque 
visible edges. Consequently, the obtained image of the 
CIRCULAR.RIBBON is a kind of a wire-frame drawing, 
where all the lines are visible. In some cases, we could 
easily avoid the drawing ofhidden lines as if the faces of the 
object were non-transparent. 

If we order PITCH before CIRCULAR.RIBBON, the 
following image will result: 



April1990 -----LOGO EXCHANGE -----11~~ Page23 

PITCH-30 
CIRCULAR.RIBBON 

Notice how the command PITCH -30 before 
CIRCULAR.RIBBON produces an image of the object as 
seen from above with a 30 degree tilt. This happens because, 
in 3D-Logo, the starting position and heading of the hand 
define, in relation to the viewpoint situated in front of the 
center of the screen, the image of the three-dimensional object 
that the procedure creates. When we begin with 3D-Logo, we 
suppose that the hand rests on the center of the screen with the 
fmgers pointing up. It is the classical initial position of the 
turtle at the beginning of any activity. 

So any movement given to the turtle before commanding 
the name of an object will affect the perspective of the object 
drawn by the computer. Thus, wecanobtaindifferentperspec
tives of the same object from different points of view. For 
instance: 

ROIL 15 VEER 30 
CIRCULAR.RffiBON 

3. Now, let us define MOVE.3 which joins contiguous 
pieces including aPITCHrotation in between. The group 
of PLATEs joined with MOVE.3 shapes, in this case, a 
kind of twisted strip: 

TO TWISTED.RIBBON 
REPEAT 30 [PLATE MOVE. 3) 
END 

TO MOVE.3 
MOVE.l 
PITCH 12 
END 

1WISTED.RIBBON 

The twisting degree of the ribbon is given by the relation 
between the angle given by PITCH 12 and the displacement 
given by TRAVEL 8 in the procedure MOVE.l. A greater 
value of the angle in relation to the value of the displacement 
will result in a more twisted ribbon. 

It is interesting to realize how small changes in the 
MOVE procedures produce large changes in the results at the 
end,justas subtle changes in the genetic code do. A computer 
program can be considered as a "society of procedures," after 
Marvin Minsky's terminology. Making a large program 
means assembling many little parts and processes, each of 
them made up of very simple instructions. It is remarkable to 
see how large entities do not rely directly on the little parts that 
form them. What is important here is the whole, the way the 
parts affect each other, and not what they are in themselves. 

4. In this section, let us place PLATEs combining several 
movements, with the intention of creating a shape similar 
to a spiral staircase. We use PLATE as the tread, stepping 
upwards by means of a ROIL movement before a trans
lation given by the MOVE.1 procedure. Then, we impose 
a ROIL movement of inverse sign, in order to whirl 
around the axis of the staircase. 



Page24 -----LOGO EXCHANGE-----~~~~· Apri11990 

TO SPIRAL.STAIRCASE 
REPEAT 120 [PLATE MOVE. 4] 
END 

TO MOVE. 4 
ROLL -9 
MOVE.1 
ROLL 9 
VEER 6 
END 

PU1RAVEL75 
PD 
PITCH70 
SPIRAL.ST AIRCASE 

The shapes displayed above could encourage some read
ers to build helicoidal ribbons similar to DNA 
( deoxyribonuclei acid) structures. 

5. Let us insist on joining PLATEs, mixing both ROLL and 
PITCH commands. If, when the last PLATE meets the 
first, the PITCHed angle totals 180 degrees, we create a 
MObius strip. 

The MlSbius strip, named after August F. MObius, is a 
surface with only one side, formed by giving a half twist to a 
narrow, rectangular strip of paper or any other material, and 
then pasting its two ends together. 

We can immediately create a procedure called MOBIUS 
by using procedure MOVE.2 which ROLLs an angle 3 (3fiJ/ 
120). As the recursive procedure MOBIUS is executed 120 
times, consequently the relative PITCH angle between con
tiguous PLATEs must be 1.5 (180/120) in order to produce 
one half-twisL In this way, the total rotation is 180 for the sum 
of the relative PITCH angles and 3fiJ for the sum of the ROLL 
angles. 

TO MOBIUS :TILT 
IF :TILT - 180 [STOP] 

PITCH-30 
MOBIUSO 

PITCH :TILT PLATE PITCH -:TILT MOVE.2 
MOBIUS :TILT + 1.5 
END 

As it is known, the MOBIUS strip has only one bounding 
edge. We can verify this by coloring its contour as we go over 
iL One way could be to define a procedure MARK which 
would paint a black square at one extreme of the PLATE. 
Then, by means of the procedure MARK. BORDER, we could 
repeat MARK all along the border: 

TO MARK 
PU 
TRAVEL 24 
PD 
SQUARE 8 
PAINT.SQUARE 
PU 
TRAVEL -24 
PD 
END 

TO MARK.BORDER :TILT 
IF :TILT - 360 [STOP] 
PITCH :TILT MARK PITCH -:TILT MOVE.2 
MARK.BORDER :TILT + 1.5 
END 

Compare the last figure with the following one corre
sponding to the CIRCULAR.RIBBON -which is an ordinary 
surface with two sides and two boundary edges. We have gone 
over and colored one of its two borders in a similar way: 



April1990 -----LOGO EXCHANGE -----11111-~· Page25 

In the MOBTIJS procedure, we have twisted one end of 
the strip 180 degrees before joining it with the other end. It is 
easy to introduce a change in the MOBTIJS procedure, includ
ing as input the number of :HALF.1WISTS of the strip: 

TO HIGH.ORDER.MOBIUS :TILT :HALF.TWISTS 
IF :TILT - 180 * :HALF.TWISTS [STOP] 
PITCH :TILT PLATE PITCH -:TILT MOVE.2 
HIGH.ORDER.MOBIUS :TILT + 1.5 * 

:HALF. TWISTS :HALF. TWISTS 
END 

HIGH.ORDER.MOBTIJS is a variable procedure for 
building MObius strips of :HALF.1WISTS-th order. When 
:HALF.1WISTS is 2, we get a full twist 

PITCH-30 
HIGH.ORDER.MOBTIJS 0 2 

When :HALF.1WISTS is an odd number, the surface is 
one-sided and possesses a single boundary curve which is 
knotted when :HALF.1WISTS is greater or equal to 3. For 
instance, if we command three :HALF.1WISTS, we obtain: 

PITCH-30 
HIGH.ORDER.MOBTIJS 0 3 

When :HALF.1WISTS is an even number we obtain 
strips with two sides and two linked boundaries, like the one 
we obtained when :HALF.1WISTS was 2. Finally, let us see 
the resulting image when :HALF.1WISTS is 4: 

Final remarks 

PITCH -30 
HIGH.ORDER.MOBIUS 0 4 

The way of describing a shape with 3D-Logo is different 
from other methods based, for example, on the individualiza
tion of the coordinates of particular points of the objects, 
which are related to criteria of extrinsic geometry. The 
definition of an object made with 3D-Logo is not only 
straightforward but it also bears relevant information about 
the object itself. The shape is characterized by its intrinsic 
geometry; that is, by the distances, angles, faces, and connec
tions of its parts. 

We build forms studying their basic structural units and 
how to fit them together. A space definition arises, as in most 
Logo projects, from a combination of simple subprocedures. 
The different subprocedures used to assemble the various 
parts are comprehensible as they correspond to the natural 
movements one should follow when building up a real object. 
The properties of a shape can be deeply studied and experi
mented with. Any object definition can be conveniently 
retrieved and combined with new designs. 

It is worthwhile to realize that 3D-Logo methodology 
focuses not on the representation of the object on the screen, 

' I ' 
I 
I 



Page26 -----LOGO EXCHANGE---~~ April1990 

butrather. and this is the essential point. on the description and 
creation of the object in space. This description. formalized 
by the respective procedure, is similar to the artisanal building 
of a shape using the basic commands explained above. We 
can imagine that we have a kind of chisel that we use to carve 
the object in space. Each part of the object is created and 
joined by successive movements individualized by spatial 
commands. The process is also a kind oC'robotlanguage," as 
it can be used to guide and control robotic devices or to 
produce computer generated holograms. 

There are other computer languages and systems that can 
help students to build three-dimensional computer construc
tions, but what makes 3D-Logo oustanding are its simplicity 
and natural approach to geometry. A person is not forced to 
assimilate new and complicated methods or terminology just 
to use the computer as a versatile tool. 

Moreover, the 3D-Logo system can be immediately 
implemented in most of the existing computers using Logo. It 
is only necessary to load the correspondent procedures that 
define the 3D-Logo commands. 

Once an object is defined by means of a procedure, we can 
call it by its name and we can manipulate it as if we had it in 
our hands. This becomes specially vivid when displaying the 
perspective of the object on the screen. When a procedure is 
executed, it is instructive and fascinating to watch how the 
object is created along successive stages by the corresponding 
subprocedmes. Thus computers become active learning 
tools, providing students with an opportunity to feel the 
emotion and joy of the creative act. 

In a revitalized geometry curriculum, a more central role 
should be given to the study of three-dimensional forms. 3D
Logo can significantly contribute to that purpose. 

References 
Abelson. Harold and diSessa. Andrea A. (1981). Turtle Ge

ometry, Cambridge, MA: MIT Press. 
Coxeter. H. S.M. (1969). Introduction to Geometry. New 

York: John Wiley and Sons. 
Minsky, M. (1987). The Society of Mind. New York: Simon 

& Schuster. 
Papert. S. (1980)Mindstorms. New York: Basic Books, New 

York.1980. 
Reggini, H. C. (1985, July). Three-dimensional space with 

Logo. Paper presented at Plenary Session IV, Logo-85 
Conference, Cambridge, MA. Published in MICRO
MATH, 2(1), Spring, 1986. 

Reggini, H. C. (1985). Ideas y formas, explorando el 
espacio con Logo. Buenos Aires: Ediciones Gah\pago. 
(French translation: (1986). Logo dans 1' espace. Cedic/ 
Nathan: Paris; Italian translation: (1987).Idee eforme. 
Roma: Sisco Sistemi Cognitivi.) 

Reggini. H. C. (1986). Towards and artisanal use of 
computers, their application to the design and study of 
three-dimensional forms. Proceedings of the Third 
International Logo Conference, Cambridge, MA. 

Reggini. H. C. (1986). Exploring 3-dimensional space with 
Logo (Logo Memo 102). Cambridge, MA: MIT. 

Reggini, H. C. (1986). 3-dimensional Logo commands and 
procedures (Logo Memo 103). Cambridge. MA: MIT. 

Reggini, H. C. (1986). Projects with 3-dimensional Logo 
(Logo Memo 104). Cambridge, MA: MIT. 

Reggini. H. C. (1987). Creaci6n y representaci6n de formas 
tridemensionales. Anales della Academia Nacional de 
Ciencias Exactas. Buenos Aires. 

Horacia Reginni 
Buenos Aires, Argentina 



April1990 -----LOGO EXCHANGE----.... Page27 

Building a Turtle in HyperCard: 
"Mock Turtle" 
by Glen L. Bull and Gina L. Bull 

HyperCard was developed by Bill Atkinson. Bill Atkin
son was also the developer of MacPaint, a program respon
sible for much of the early interest in the Macintosh, and 
QuickDraw, the native graphics language of the Macintosh. 
HyperCard was initially intended to bean educational author
ing system for the Macintosh. In fact, Bill Atkinson mentions 
Logo as one of the programming languages that influenced the 
development of HyperCard. There were, of course, many 
other sources of inspiration, but it is safe to say that anyone 
who uses Logo will also find HyperCard to be a comfortable 
environment in which to work. 

Given the early history of HyperCard, and Bill 
Atkinson's background in the development of innovative 
graphics applications, it is somewhat surprising that Hyper
Card does not include turtle graphics. Turtle graphics have 
spread from Logo to many other languages, including Pascal 
andBASIC. AlthoughHyperCardhasverystrongpainttools 
for development of freehand illustrations, Logo users will be 
less comfortable with its tools for creation of graphics pro
grams, since they are based on Cartesian coordinates rather 
than turtle geometry. 

Building the Turtle 
HyperCard provides all the tools required to build a 

turtle, however. In this column we will build the basic turtle 
and develop the commands required to move it around the 
screen, such as RIGHT, LEFT, FORWARD, and BACK. In 
the previous two columns we showed you how to create a 
HyperCard button called compass, and how to write com

mands such as UP and DOWN to 
move the button around the screen. 
The button named "Compass" 
looked like this. 

In this column we will build a 
turtle shape that will replace the 
compass. In the same way that some versions of Logo provide 
a shape editor that allows the shape of the turtle to be altered, 
the icon displayed on a HyperCard button also can be 
changed. Some icons, such as the compass shape, are 
supplied with HyperCard. It is also possible to create addi
tional icons that can be used with HyperCard- up to 32,000 
more. 

There are several ways in which this can be done. The 
turtle shape could be created using the Fat Bits option in the 

HyperCard paint tools, and then converted to an icon with a 
shareware program such as I con Maker. In this instance we 
used a commercial program called I con Factory to create the 
turtle shapes. (Sources for these programs are listed at the end 
of the column.) 

• • •• ••••• ••••••• ••••••••• ••••••••••• ••••••••••••• ••••••••••••••• ••••• • •••• •••••• • ••••• ••••••••••••••••••••• ••••••••••••••••••••••• 

Note: If you do not have an 
icon editing program at this 
time, you will be able to use 
one of the existing icons built 
into HyperCard as a "turtle 
substitute." Information on 
substitution of an existing 
HyperCard icon for the turtle 
will be provided in the next 
section. 

To create the illusion that the turtle is turning, it is neces
sary to create different turtle shapes for different directions. It 
is not necessary to create a different turtle shape for each 
degree of rotation, but only for every 5 or 10 degrees. If you 
look at the turtle in your version of Logo closely, the chances 
are that you will notice that the shape does not change when 
you type "Right 1." It only changes when you type ''RightS" 
or "Right 10." We looked at several versions of Logo on 
Apple and ffiM computers, and found several that had turtle 
shapes for the following degrees: 0 
5 15 25 35 45 55 65 75 90, etc. We 
decided to create turtle icons for 
every 5 degrees of rotation in the 
turtle graphics that we created for 
HyperCard. We named Turtle 0 

TO T90 

"TO," Turtle 5 "T5," Turtle 90 "T90," and so on. 

The turtle icons for the first 90 degrees of rotation looked like 
this: 

A. 4 .4_ 4 ~ 

~ 411(\ ~ ~ ~ 

~ ., 
" ~ ~ 

~ ~ ~ ~ 



Page28 ------L 0 G 0 EX C H A. N G E ----~~ Aprill990 

Once we created all 72 turtle icons, named TO through 1"355, 
we created a turtle button to put them in. We named the button 
"Turtle." Be sure that the ''Show Name" checkbox is not 
selected, and that the style of the button is set to transparent, 
as shown below. (If you have never made a HyperCard 
button, and don't know how to create one, you will need to 
refer to the instructions in last month's column.) Note: to 
highlight the the important features, we have modified some 
of the pictures of the dialog boxes so that only the most salient 
aspects are included in the illustrations. 

Button Nome: '-1 T_u_r_tl_e ____ ___. 

Cord button 1 D: 1 Style: 

D Show nome ®transparent 
0 opaque 

Once you have created the turtle button, you can set the shape 
that appears in the button to any of the turtle icons made 
previously. For example, you might type the following in the 
Message Box of HyperCard. (If the message box is not 
visible, you can make it appear by holding down the Com
mand key- the one to the left of the spacebar with a picture of 
a cloverleaf- and typing "M." ) 

set the 1con of card button turtle to ''T45'' 

This will produce the following turtle shape, pointing ~ 
in a 45 degree direction, in the middle of the turtle ""-' 
button. 

Turtle Substitutes 
If you have not developed the turtle icons at this point (it 

took us an evening to make them), you can still complete the 
remainder of the activities in this column using the compass 
icon in place of the turtle icons. The turtle button will not be 
as "turtle like" as traditional versions of Logo if the compass 
icon is used, but it will still be able to follow traditional Logo 
commands such asFORW ARD and RIGHT. If you are using 
the compass icon in place of the turtle icons, type this in the 
message box instead: 

set the icon of card button turtle to 
"compass" 

Creating the Right and Left Commands 
The commands to tum the turtle will record a heading for 

the turtle, and then set the turtle icon to the shape nearest that 
heading. If the turtle heading were 67 degrees, for example, 
we would want to set the turtle shape to icon "T65", since 
icons only exist for every five degrees of rotation. To round 
the heading to the nearest five degrees, fli'St divide by five, 
round the result, and then multiply by five. To verify that this 
works, type the following into the Message Box: 

round (67 I 5) * 5 

The answer returned in the message box should be "65." If 
you had typed 68 degrees rather than 67, the algorithm would 
have rounded the answer up to ''70." 

If a heading is greater than 360 degrees, it is also neces
sary to start counting from zero again. For example, if a user 
types ''Right 370", the actual heading should be set to 10 
degrees (that is, 370 - 360). This adjustment can be made 
through use of the "MOD" function, available in both Logo 
and HyperCard. To try out this function, type the following 
in the Message Box: 

370 MOD 360 

The result returned by HyperCard should be "10." 

These are the basic algorithms that will be necessary to 
create a "Turn" procedure. To develop a command for 
RIGHr, fli'St record an initial heading for the turtle in the 
Message Box: 

put 0 into heading 

Then go to the Stack editor of the HyperCard stack, and enter 
the following script (Delete any other scripts which may 
already be in the editor before entering this one. If you do not 
know how to enter a script, refer to the preceding two col
umns.) Remember that in these and other examples the 
symbol "-1' means that the line is continued, and is generated 
by holding down the option key as you press the return key. 

on RIGHT degree 
global heading 
add degree to heading 
if heading < 0 then put ~ 

(heading mod 360) + 360 into heading 
if heading > 355 then put ~ 

heading mod 360 into heading 
set icon of card button turtle to ~ 

"T" & round (heading I 5) * 5 
end RIGHT 



Apri11990 ------L 0 G 0 EXCHANGE ----ofl£11-~· Page29 

This script will tum the heading of the turtle by the amount 
specified, and set the turtle icon to the corresponding turtle 
shape. (Important note: H you are using the compass icon 
rather than the turtle icon, omit the last line of the procedure.) 

The procedure RIGHT can be used to create its counter
part LEFI'. Degrees are simply multiplied by minus one to 
tum the turtle in the opposite direction. 

on LEFT degree 
RIGHT (-1 * degree) 

end LEFT 

Developing Forward and Back 
Once the commands to turn the turtle are created, we are 

ready to develop commands to move the turtle FORWARD and 
BACK. In last month's column we created commands to move 
the compass button, but commands such as UP and DOWN 
were limited to movement along right angles. FORWARD and 
BACK, in combination with RIGHT and LEFT, can be used to 
move the turtle in any direction. 

Assume that the heading of the tmtle is 70 degrees, and 
that we would like it to travel forward 100 steps. To put the 
turtle in the right location, we will need to move it over by X 
amount, and up by Y amount Therefore, if we knew the 
values of X andY, we would have the coordinates of the new 
location of the turtle. 

Papert designed turtle graphics to provide a "Math Land" 
in which numbers could be explored in a natural context, but 
it must be confessed that mathematics still produces anxiety 
even in some long-time Logo users. If a discussion of 
numbers provokes undue anxiety, you can skip directly to the 
procedures for FORWARD and BACK. and enter their scripts. 
However, for those who are interested, we provide an expla
nation of how the values of X andY can be determined. Only 
the simplest arithmetic is required, so you will not need an 
advanced degree in mathematics to understand the derivation. 

The X-value can be calculated by multiplying the dis
tance the turtle has traveled times the cosine of the angle 
shown below. 

X ---IIJ!t~ 

This can be expressed 
algebraically as: 
X= 
Distance times Cos 
(Angle) 

The angle in this case is the heading of the turtle subtracted 
from 90 degrees. Since the heading of the turtle is 70 degrees, 
90 minus 70 equals an angle of 20 degrees. Therefore the 
formula needed to calculate X in this instance is: 

X= 100 times Cos (20 degrees) 

There is only one slight hitch. The cosine function in Logo 
accepts inputs expressed in degrees, but the cosine function in 
HyperCard requires that measurements be expressed in radi
ansratherthandegrees. Fortunately,degreescanbeconverted 
to radians by multiplying them by the value of PI divided by 
180. 

radians= degrees times (PI I 180) 

Therefore, the formula to calculate the value of X becomes: 

X= 100 times Cos (20 degrees times PI I 180) 

A more general formula to calculate the value of X for any 
turtle heading and distance could be expressed in this way: 

X= Distance* Cos (90- Heading * PI I 180) 

This value of X must be added to the current location of the 
turtle to find the new X position. 

The new value of Y is calculated in a way that is very 
similar to the way in which X is calculated. The value of X 
is the distance traveled times the cosine of the angle, while the 
value ofY is the distance traveled times the sine of the angle. 

Y = Distance* Sin (90- Heading * PI I 180) 

This method is used to determine values of X andY and add 
them to the current position of the turtle to locate a new 
position. Once the new coordinates are calculated, the loca
tion of the turtle is set to the new position. 

on FORWARD length 
global heading 
put the loc of card button turtle into 

pos 
put item 1 of pes + length * 

cos ((90- heading) *PI I 180) 
into x 

put item 2 of pos - length * 
sin ((90- heading) *PI I 180) 
into y 

put round (x) & "," & round (y) 
into newPos 

set the lee of card button turtle to 
newPos 

end FORWARD 



Page30 -----LOGO EXCHANGE----~ April1990 

The procedure FORWARD can be used to create its 
counterpart BACK. The variable .. length" is simply multi
plied by minus one to move the turtle in the opposite direction. 

on BACK length 
FORWARD (-1 * length) 

end BACK 

Other Direction and Position Commands 
With FORWARD, BACK, LEFT, and RIGHT you can 

move the turtle anywhere on the HyperCard screen just as you 
can in Logo. There are a few other direction and positioning 
commands that are handy to have. Sometimes it is convenient 
to set the turtle heading to an absolute direction. In Logo this 
is accomplished with the SETH (Set Heading) command. The 
HyperCard equivalent can be written in the following way. 

on SETH degree 
global heading 
put degree into heading 
if heading < 0 then put ~ 

(heading mod 360) + 360 into heading 
if heading > 355 then ~ 

put heading mod 360 into heading 
set icon of card button turtle to ~ 

"T" & round (heading I 5) * 5 
end SETH 

The HyperCard turtle we created does not wrap, butjustkeeps 
traveling when it goes off the edge of the screen. The HOME 
command provides a way to bring the turtle to the center of the 
screen if it gets lost. Since the HyperCard screen is 512 steps 
across and 342 steps down, X andY coordinates for the center 
of the screen would be approximately 256,171. 

on HOME 
seth 0 
set the loc of card button ~ 
turtle to 256,171 

end HOME 

Because HyperCard does not record the value of variables 
when you exit the program, it will be necessary to initialize the 
value of the turtle's heading each time the stack is opened. 
Some versions of Logo have a STARTUP procedure that can 
be used to automatically initialize setup variables when the 
program is frrst started. In HyperCard a similar function can 
be accomplished with an openS tack script that is placed in 
the Stack script. 

on openStack 
global heading 
put 0 into heading 

set ioon of ca.J:db.:lttcn turtle to "T" & heading 

end openStack 

Entering the openStack script in the Stack editor will 
ensure that HyperCard does not complain that it does not 
know the value of heading when you first start the 
program. 

Summary 
In the previous two months, we showed you how to do the 

following: 

• Create a new stack 
• Create HyperCard buttons 
• Write a HyperTalk procedure 
• Use inputs in HyperTalk procedures 

In this column we have demonstrated how you can: 

• Build a Logo turtle in HyperCard 
• Create LEFT and RIGHT commands to tum the turtle 
• Create FORWARD and BACK commands to move the turtle 
• Write an openStack script to initialize variables 

This turtle can move around the screen just as the Logo turtle 
does, but it cannot draw yet, because it does not have PENUP 

and PENDOWN commands. In next month's column, the last 
of the year, we will give the turtle a pen in Turtle Graphics for 
HyperCard. 

Glen Bull is a member of the instructional technol
ogy faculty in the Curry School of Education at the 
University of Virginia Gina Bull is a programmer 
analyst for the University of Virginia Department of 
Computer Science. By day she works in a Unix 
environment; by night, in a Logo environment. 

Glen and Gina Bull 
Curry School of Education 

Ruffner Hall 
University of Virginia 

Charlottesville, VA 22903 

BTINET addresses: 
Glen: GBULI.@ VIRGINIA. Gina: GINA@VIRGINIA. 

Sources for Icon Editors 
Both commercial and shareware icon editors are available. 
We recommend Icon Factory because it is designed to work 
directly with HyperCard. It is $49.95 direct from the manu
facturer. 



Apri11990 -----LoGo ExcHANGE---~~ Page 31 

Edited by Dennis Harper 
University of the Virgin Islands 
St. Thomas, USVI 00802 

Logo Exchange Continental Editors 
Africa Asia AustraHa Europe 
Fatimata Seye Sylla 
UNESCO/BREDA 
BP 3311, Dakar 
Senegal, West Africa 

Marie Tada 
SL Mary's lnL School 
6-19, Seta 1-chome 
Setagaya-ku 

Jeff Richardson 
SchoolofEducation 
GIAE 

Harry Pinxteren 
Logo Centrum Nederland 
P.O. Box 1408 

Latin America 
Jose Valente 
NIED 
UNICAMP 
13082 Campinas 
Sao Paulo, Brazil Tokyo 158, Japan 

Switchback Road 
Churchi113842 
Australia 

BK Nijmegen 6501 
Netherlands 

This month's Global News will be introducing both our 
new Asian correspondent as well as a new Logo book from 
Europe. The column then looks at several common ways that 
Logo is introduced into a society. 

Greetings 
Our new Asian correspondent is Marie Tada. She sends 

the following greeting to LX readers. 

I am excited about being an Asian area representative for 
the Logo Exchange and hope to be able to send you interesting 
updates on what is happening in regards to Logo learning in 
Japan and in other Asian locations. As this appoinbnent has 
been very recent and I haven't had time to scout out any other 
news, I would like to introduce myself and let you know about 
my connections with Logo. I am presentlyacomputercoordi
nator at St. Mary's International School in Tokyo and have 
been living in Japan since 1971. StMary's is a boys' school 
with approximately 1000 students from 70 different coun
tries. It was my good fortune to take a summer course in Logo 
in Massachusetts about seven years ago. From thattimel have 
taught Logo in summer school sessions and to second grade 
classes. A few years ago we were fortunate to get a large 
donation of computers from mM to set up an elementary 
school computer lab. Since then all students from Grades K-
6havehad weeklylessonsinthecomputerroom with Logo W
riter at the core of the curriculum. I would like to encourage 
any LX readers with information of interest to Asian Logo 
users to correspond with me. 

Eurologo Proceedings 
Logo Exchange readers may well be interested in the 

proceedings of the Eurologo '89 Conference that was held last 
September. Eighteen of the papers have been combined in a 
book entitled Teaching and Learning inLogo-basedEnviron
ments, edited by G. Schuyten and M. Valcke. The articles 
reflect the wide variety of themes presented and discussed 
during this international event, including teacher training, 

Logo research, Logo practice, new Logo versions, hardware 
extensions, meta-analysis of Logo research and the state of the 
art and theoretical backgrounds ofLogoresearch and practice. 

The contributions can be subdivided into four parts: The 
first set of texts is of a rather general nature and discusses 
cmrent theory and practice in Logo environments from three 
perspectives: fll'St from a constructivist point of view, second 
from a research point of view and a third based on all the 
contributions to Eurologo '89. A second set of texts focuses 
on the pupil in Logo-learning environments. The pupil's 
learning behavior is researched and described in varying 
settings. A third set of texts focuses on the teacher, especially 
on his training status. The next set of contributions concen
trates on the computer learning environment; microworlds, 
hardware extensions and new Logo versions are discussed. 
Some of the contributions illustrate the relevance of the 
technical add-ons for enhancing the educational potential of 
thenewleamingenvironments. Thisbookcanbesummarized 
as one attempting to answer the questions: What is the real 
educational potential of Logo-learning environments and 
how can this potential be realized? 

Those interested in obtaining a copy of this book should 
write: c/o lOS, P.O. Box 2848, Springfield, VA 22152-2848 
USA (FAX703-250-4705) or c/o lOS, VanDiemenstraat94, 
103 CN Amsterdam, Netherlands (FAX 31 20 22 60 55) or 
c/o lOS, Highway Development Co. Ltd., 1st Golden Bldg., 
8-2-9 Ginza, Tokyo-Chouoku, Japan 104 (FAX 81 35 72 86 
72) 

Logo in Society 
I would now like to turn to ways that Logo is introduced 

into a society, with each way carrying particular implications 
for how Logo will be accepted by the importing society. 

For convenience of discussion, modes of transfer can be 
identified with three kinds of people who initiate the transfer: 



Page32 -----LOGO EXCHANGE----~ April1990 

(1) missionary zealots, (2) interested officials in combination 
with willing helpers, and (3) learners abroad (Michel, 1987, 
p.128). 

Missionary zealots are members of advanced industrial 
societies who are intent on vigorously disseminating Logo to 
developing societies. They seek out key members of develop
ing nation's political and educational hierarchies with the 
intention of convincing those officials to include Logo in their 
country's instructional system. 

Some of these Logo zealots are producers of Logo mate
rials, and in their desire to sell their goods, they oversell their 
product. Another group of zealots truly have the welfare of 
Third World peoples at heart. They often represent interna
tional organizations (UNESCO, UNICEF), or foreign offices 
of a government (the British Council, US-AID). In a humani
tarian spirit, they advocate the adoption of Logo because they 
are convinced that it will promote educational progress in 
developing societies. 

Interested officials are members of a developing society 
who are seeking ways to solve their nation's educational 
problems, particularly the problem of furnishing widespread, 
high-quality educational opportunities to their populations at 
a reasonable cost. The more decision makers in an importing 
nation know about the educational advantages and disadvan
tages of Logo, the greater the probability Logo will be adopted 
in a form that enhances the educational effectiveness of their 
society. 

Learners abroad are either students from developing 
countries who are in long-term study programs in high
technology societies, or else they are short-term visitors to 
high-technology nations (e.g., attending conferences). When 
they return home, they attempt to introduce Logo into their 
own societies. 

A variety of means may be used by these purveyors of 
Logo to acquaint people of the developing society with the 
characteristics of the language and philosophy. The principal 
means are demonstrations, videos, and lectures. 

Two characteristics of Logo advocates that influence 
how Logo will be adopted in a developing society include: (1) 
the advocates apparent level of expertise regarding both Logo 
and the recipient society, and (2) how truthful and well
intentioned these enthusiasts appear to be. 

The more that the exporters know about the culture and 
goals of the recipient nation, the more appropriate and effi-

cient the transfer of Logo will be. Ignorance of local condi
tions can hamper efforts to implement Logo. Suggesting 
Logo for nationwide implementation in a country where the 
cost of computers would be enormous, where there is no 
skilled staff to develop high-quality programs, where there is 
no electricity in a great many villages, where computers 
deteriorate rapidly in the humid climate, and where there are 
no facilities for repairing computers, would be fruitless. 

I will be expanding on these and other considerations 
(political, economic, etc.) for introducing Logo into a society 
in a paper that will appear in a special issue of Education 
dedicated to Logo. Education is in its Ill th year of publica
tion and this Logo issue is something to look forward to. 



LONG DISTANCE LOGO 
Educators-You don't have to go to classes to earn graduate credit-let the classes come to 
you! Introduction to Logo For Educators, a graduate level independent study course , allows 
you to learn at your own pace while corresponding with your instructor by mail. 

WORK INDIVIDUALLY OR WITH A GROUP 

Take Introduction to Logo For Educators at home, or study with a group of colleagues. 
The course uses video tapes (ON LOGO) with MIT's Seymour Papert, printed materials, 
textbooks, and disks. View the tapes, read and report on course materials, do projects, 
design Logo lessons for students, and correspond with instructor by mail. 

NOT JUST ANOTHER CLASS 

Dr. Sharon (Burrowes) Yoder, editor of the Logo Exchange journal, designed Introduction to 
Logo For Educators to provide staff development and leadership training . The four quarter
hour course meets the standards of the College of Education at University of Oregon, and 
carries graduate credit from the Oregon State System of Higher Education. 

ON LOGO VIDEO TAPES 

School Districts may acquire a license for the use of the ON LOGO package of 8 half-hour 
videotapes and 240 pages of supporting print for $599.00. For a one-time fee of $1295.00, the 
package may be obtained with both tape and print duplicating rights, enabling districts to build 
libraries at multiple sites. 

Group Enrollment. A tuition of $260 per participant is available to institutions that enroll a 
group of six or more educators. This special price does not include the ON LOGO videotapes. 
Your group must acquire the tapes or have access to them. Once acquired, the library of 
tapes and materials may be used with a new groups enrolling for the same reduced fee. 

Individual Enrollment. Educators with access to the tapes may enroll indiviidually for $290. 
Tuition including tape rental is $320. A materials fee to $60 per enrollee is charged for texts 
and a packet of articles. Enrollees who already have the texts do not neet to order them. 

Tuition Information, Detailed Course Outlines, and Order Blanks can be obtained from : 

LONG DISTANCE LEARNING, ISTE, University of Oregon, 
1787 Agate St. , Eugene, OR 97403-9905. 

Phone 503/346-4414 



. ·- · 

Basic one year membership includes 
eight issues each of the Update 
newsletter and The Computing 
Teacher, full voting privileges, and a 
10% discount off ISTE books and 

$36.00 

Professional one year membership 
includes eight issues each of 
theUpdate newsletter and The 
Computing Teacher, four issues of the 
Journal of Research on Computing in 
Education, full voting privileges, and 
a 10% discount off ISTE books and 
courseware. $69.00 

The International Society for Technology in Education 
touches all corners of the world. As the largest 
international non-profit professional organization 
serving corrlputer using educators, we are dedicated to 
the improvement of education through the use and 
integration of technology. 

Drawing from the resources of committed professionals worldwide, ISTE 
provides information that is always up-to-date, compelling, and relevant to 
your educational responsibilities. 

Periodicals, books and courseware, Special Interest Groups, Independent Study 
courses, professional committees, and the Private Sector Council all strive to 
help enhance the quality of information you receive. 

Rely on ISTE support: 

• The Computing Teacher draws on active and creative K-12 educators to 
provide feature articles and carefully selected columns. 

• The Update newsletter reaches members with information on the activities 
of ISTE and its affiliates. 

• The journal of Research on Computing in Education comes out with articles 
on original research project descriptions and evaluations, the state of the 
art, and theoretical essays that define and extend the field of educational 
computing. 

• Books and courseware enhance teaching materials for K-12 and higher 
education. 

• Professional Committees develop and monitor policy statements on 
software use, ethics, preview centers, and legislative action. 

• The Private Sector Council promotes cooperation between educational 
technology professionals, manufacturers, publishers, and other private 
sector organizations. 

It's a big world, but with the joint efforts of educators like yourself, ISTE 
brings it closer. Be a part of the international sharing of educational ideas and 
technology. Join ISTE. 

Join today, and discover how ISTE puts you in touch with the world. 

ISTE, University of Oregon, 
1787 Agate St., Eugene, OR 97403-9905. 

ph. 503/346-4414 




