
Journal of the ISTE Special Interest Group for Logo-Using Educators

i LOGO
•t t• EXCHANGE

May 1990 Volume 8 Number 9

H\lperCard

.International Society for Technology in Education

LONG DISTANCE LOGO
Educators-You don't have to go to classes to earn graduate credit-let the classes come to
you ! Introduction to Logo For Educators, a graduate level independent study course, allows
you to learn at your own pace while corresponding with your instructor by mail.

WORK INDIVIDUALLY OR WITH A GROUP

Take Introduction to Logo For Educators at home, or study with a group of colleagues.
The course uses video tapes (ON LOGO) with MIT's Seymour Papert, printed materials,
textbooks , and disks. View the tapes , read and report on course materials, do projects,
design Logo lessons for students , and correspond with instructor by mail.

NOT JUST ANOTHER CLASS

Dr. Sharon (Burrowes) Yoder, editor of the Logo Exchange journal, designed Introduction to
Logo For Educators to provide staff development and leadership training . The four quarter
hour course meets the standards of the College of Education at University of Oregon, and
carries graduate credit from the Oregon State System of Higher Education.

ON LOGO VIDEO TAPES

School Districts may acquire a license for the use of the ON LOGO package of 8 half-hour
videotapes and 240 pages of supporting print for $599.00. For a one-time fee of $1295.00, the
package may be obtained with both tape and print duplicating rights, enabling districts to build
libraries at multiple sites .

Group Enrollment. A tuition of $260 per participant is available to institutions that enroll a
group of six or more educators. This special price does not include the ON LOGO videotapes.
Your group must acquire the tapes or have access to them. Once acquired, the library of
tapes and materials may be used with a new groups enrolling for the same reduced fee.

Individual Enrollment. Educators with access to the tapes may enroll indiviidually for $290 .
Tuition including tape rental is $320. A materials fee to $60 per enrollee is charged for texts
and a packet of articles. Enrollees who already have the texts do not neet to order them .

Tuition Information, Detailed Course Outlines, and Order Blanks can be obtained from :

LONG DISTANCE LEARNING, ISTE, University of Oregon,
1787 Agate St. , Eugene, OR 97403-9905.

Phone 503/346-4414

! LOGO
!! !!EXCHANGE I I _

Volume 8 Number 9 Jomnal of the ISTE Special Interest Group for Log~ Using Educators May 1990

Founding Editor
Tom Laugh

Editor-In-Chief
Sharon Yoder

International Editor
Dennis Harper

International F1eld Editors
Jeff Richanfson
MarieTada
Hany Pinxtcrcn
Fatimata Seye SyDa
Jose Armando Valeute
Hillel Weintraub

Contributing Editors
Eadie Adamson
Gina Bull
Glen Bull
Doug Clements
Sandy Dawson
Dorothy Fitch
Judi Harris

SIGLogo Board of Directors
Gary Stager, President
Lora Friedman, Vice-President
Beverly and Lee Cunningham, Communications
Frank Matthews, Treasurer

Publisher
International Society for Technology in Education
Dave Moursund, Executive Officer
Anita Best, Managing Editor
Talbot Bielefeldt, Associate Editor
Mark Homey, SIG Coordinator
Lynda Ferguson, Advertising Coordinator
Ian Byington, Production

Advertising space in each issue of Logo Ezciulnge is limited.
Please contact the Advertising Mgr. for availability and details.

Logo Ezchlmge is the journal of the International Society for
Technology in Education Special Interest Group for Logo
using Educators {SIGLogo), published monthly September
through May by ISlE, University of Oregon, 1787 Agate
Street, Eugene, OR 97403-9905, USA; 503/346-4414. This
publication was produced using Aldus PageMaker®.

POSTMASTER: Send address changes to Logo Exchange,
U of 0, 1787 Agate St., Eugene, OR 97403. Second-class
postage paid at Eugene OR. USPS #000-554.

Contents

From the Editor-The Logo Exchange_.or the
JoumtJI of Leamer Based Tools?
Sharon Yoder 2

Monthly Musings- Qwerty Revisited
TomLough 4

Logo Ideas-Thinking Non-mathematically About
Mathematical Physics Problems
&me~~n 5

Beginner's Comer-A Summer Program of Words and Lists
Dorothy Fitch 8

The Gears of Childhood
Glen Bull, Gina Bull, and Jum Harris 11

Pacman Penpals
Jandy Bird 17

MathWorlds-Connuence: Logo, Educational Technology,
and Mathematics
edited by A. J. (Sandy) Daw~n 19

Letter to the Editor
Brian Harvey 22

Logo and Company-Turtle Graphics for HyperCard
Glen L. Bull and Gina L. Bull 23

Logo: Search and Research-Programming with Style
Douglas H. Clements 29

Global Logo Comments from Japan and Uruguay
edited by Dennis Harper 31

'.-

-

Page2 -----LOGO EXCHANGE----~ Mayl990

The Logo Exchange
•.. or the

Journal of Learner Based Tools?

It's a blustery day on the Oregon coast. The clouds and
the sun have been playing tag over an ever changing ocean as
I have prepared the columns and articles for this year's final
issue of LX . Only 10 years ago, my typewriter would have
been smrounded by piles of paper, and my desk would have
beenlitteredwitheraserdust Butit's 1990. Now my Macin
tosh desktop shows a well-organized group of word processed
documents ready for the production department Those neat
rows of documents are deceptive, though. Mochas the soaring
of the gulls belie the strength of the ocean winds, those
Macintosh icons mask the potential turmoil that is hidden
within several of my documents.

Trouble in Logo-land?
The material is this issue of LX runs the range from

immediately useful ideas for classroom teachers to deep
philosophical discussions; from Logo as a tool to Logo as a
programming language. This May issue clearly highlights the
range of points of view in the Logo community, a range that
makes it increasingly difficult to meet the needs of every
reader in one journal.

Over the past couple of years, I have seen an increasing
division occurring in the Logo community. One group feels
strongly thatLX should contain only teacher-centered articles
that provide activities and ideas that can be used in the
classroom ''tomorrow morning." Nothing but Logo should
even be mentioned in these pages. Others feel just as strongly
that it is the philosophy of learning that Logo represents that
is most central and whatever fits that philosophy belongs in
the pages of LX .

This current issue clearly highlights these two points of
view. On the one hand we have the classroom-oriented work
of Eadie Adamson and Dorothy Fitch. These two columns
provide ideas that you can use in your classroom right away.
On the other hand we have the "Logo Connections" column
that gives us turtle graphics in HyperCard; Sandy Dawson's
philosophical article about Logo, math, and technology; and
the Harris, Bull, and Bull article, "The Gears of Childhood."
These authors have chosen not to provide Logo activities for
the classroom. In particular, "The Gears of Childhood"
provides a thoughtful insight into ideas that are growing in
some segments of the Logo community and beyond.

Where Are We Going?
Do the contents of this month's LX mean that the Logo

Exchangeas we know it will to cease to exist? Will it suddenly
be filled with HyperCard articles and philosophical discus
sions? Certainly not! As we all know, LX was founded to
provide a source of ideas for Logo-using teachers. That mis
sion will continue. We fully expect to fill many pages next
year with practical material such as that which Eadie, Dorothy
and a number of our readers provide.

Butwhatofthe idea, expressed ina number of places this
month, that LX should become the Journal of Learner Based
Tools? It is certain that the name of LX is not going to change
next year, but it is also certain that the contents will continue
to reflect the changes that are taking place in the world of
computer education. There will still to be occasional articles
about Logo-like environments and the column "Logo Con
nections" will highlight the relationship between Logo and
the "outside" world.

Rather than changing the name of the Logo Exchange it
may be more accurate to think of LX as being one sub-part of
a journal that does not yet exist. The Journal of Learner Based
Tools may be an "umbrella" that encompasses part of the
newsletters of the SIG's for telecommunications and hyper
mediaaswellaspartsoftheLogoExchange.Perhaps,asJudi,
Gina, and Glen suggest, they are all part of a SIGTools.
Perhaps some day thatjownal or SIG may actually exist For
now, however, we'll have to content ourselves with three
separate publications to touch on the various Logo-like ideas.
In this ever-growing and ever-changing field, it is hard to
know what will happen in the years to come. Just as I no longer
use a red pen and a typewriter, the Logo Exchange must
continue to grow and change to reflect the world around us.

But you can read this issue and draw conclusions for
yourself. There is certainly food for thought in these pages.

And What of Next Year?
There will be some changes in LX next year. You will be

receiving eight 36-page issues instead of nine 32-page issues.
You will still receive LX from September through May, but
the December and January issues will be combined into one.

We will be welcoming back most of the familiar colum
nists for the coming year, so you will continue to receive a rich
variety ofideas each month. We haveplannedfortwo "theme
issues" next year. In October we will again have a "Just for
Beginners" issue; in April, a ''Logo Connections" issue.
Instead of an "Experts" issue, next year we will be adding a
column called ''Extra for Experts." This column will serve as

-

-

May 1990 -----L 0 G 0 EXCHANGE -----a~·· Page3

a forum for the more advanced articles that we publish in LX.
The column will be edited by Mark Homey. Mark is the SIG
coordinator for ISlE and will be completing his PhD here at
the University of Oregon in the area of computers in education
in the near future.

What Can YOU Do?
The Logo Exchange is what you make it. We depend on

your contributions to fill its pages. While the columnists
provide the backbone of each issue, without articles and ideas
from those of you who read LX ,we could not survive. So, as
the school year is winding down and summer begins, take
some time to write to me about your work with Logo. Even
if you've never published an article before, I'll be glad to work
with you to develop your ideas. Or perhaps you or your
students have some art that we can use on the cover? Maybe
you just have a neat idea that works with kids. Any and all
ideas are welcome. (Send them to me at the address given
below.) The deadlines for each issue next year are given
below.

Issue
September
October (Just for Beginners)
November
December/January
February
March
April
May

Due Date
June25
July 30
August27
October 1
October29
December 15
January 28
March4

So, plan to spend time this summer relaxing. Refresh
yourself in whatever way works best for you. But add several
things to your .. to do" list this summer. Reflect on the issues
raised in this month's LX. Consider reading a good book on
Logo (several are mentioned in this issue.) Drop me a line
about your work. Send me some of your student's work.
Share with others your excitement about Logo.

In any case, have a great summer! I certainly hope we'll see
you in the fall.

Sharon Yoder
SIGLogo/IS1E

1787 Agate Street
Eugene, Oregon 97403

CIS: 73007,1645 BI1NET: Yoder@Oregon

NECC '90
June 25-27, 1990

Opryland Hotel
Nashville, Tennessee

NECC Promotes
Interactions Between
• Computer Educators

from kindergarten through
graduate school

• Educators and Vendors
• Practitioners and Researchers
• Professionals from every discipline

For more information or a copy of the Call for
Participation,
contact:
ISTEINECC '90
University of Oregon, 1787 Agate Street
Eugene, OR 97403-9905 503/346-4414

National EducatiOnal Computing
Conference

!< ! !!:!! !!<1·········a·····l······~·t·f;.r .. • x·······r······.···n;·············P ..•..••.•••. :m ··.··~··········,;···c·~.······t· .. ··,·1p. ~P.()1t:··.·•··'·•• ' .. , / L"L~•\;;;• .::7: , .)....(.{• ,. >
·.-::;.;-:::.:-::::·:;:·:·:::::·:;:::;:::;:::;.:;: :-·.;-:-.·:·:··=:-;.::;.·:·.;.·:·.·.·:·····

··································:··~~~··~~··· ·· •········ .. . ·•••••••••••••••••••••••••••••·i••:••:•••:iii•lrt~mW.~~~mf:~mr~99£JE••·••••••••·••·•••••·•••·•••••••·•·•·•·••· · ~~~~~l4/~AX!(Sij3)~46..589o ··•••· ········•••·····.·· ·

Page4 -----LOGO EXCHA.NGE -----ll~·· May 1990

Qwerty Revisited
by Tom Lough

When I got to the bottom of page 32 during my very first
reading of Seymour Papert's Mindstorms, I stopped. That is
where I encountered the term "QWERTY phenomenon" for
the first time in prinL It certainly gave me something to think
about

Like most of you, I was familiar with the idea. How
something is done for the first time seems to have an incredible
effect on how the same thing (or a related variation) is done
forever more. This forms the basis for important values such
as tradition and heritage.

However, things can be carried too far. For example,
when innovative methods or new ideas are discarded without
consideration because a policy or routine must be followed
rigidly, then the sense of balance may be a little out of kilter.

I appreciated Papert' s application of the QWERTY phe
nomenon to the state of educational computing as it existed in
the early 1980's and welcomed Logo to the scene. But, more
than the language itself, I welcomed the teaching and learning
philosophy which Logo facilitated. To me, this resonance was
the critical feature.

Since the founding of this publication, I have sensed this
resonance several times with the manner in which certain
other software packages could be used. What could it called?
The term ''Logo philosophy" seemed much too narrow. In
discussionswithGlenBull.SteveTippsandothers,anamefor
this essence proved elusive.

Named or not, the idea was never far from mind. During
the planning for the East Coast Logo Conference (held April
2-4, 1987), we felt it would be important to include many
additional events which were not directly related to Logo, yet
which possessed the essential elements of this resonance. As
many of you may recall, the program included juggling,
singing, dancing, music teaching, a talking word processor,
and several other activities. In fact, the members of the
conference evaluation team commented on the unusual but
delightful diversity of the conference program. When Hyper
Card was released, I felt this same sense of resonance. (See
From the Editor, LX, Feb - Apr 1988)

At about that same time, I began to hear the term "learner
based tools" being used with increasing frequency. Glen Bull
and I came to feel that this term seemed to embody the main
ideas which we felt were most important about the ''Logo

philosophy." We discussed what impact this idea might have
on the Logo Exchange. Was the magazine primarily about
Logo or was it about how Logo could be used? Would it be
appropriate to extend this to cover how other products could
be used in a "Logolike" way?

The article by Glen and Gina Bull and Judi Harris on page
11 of this issue is an extension of this discussion, brought
forward several years into the context of the present. The heart
of the matter seems to be the service mission of the magazine.
Should it be focused on the needs of those using Logo? After
all, it is the official publication for SIGLogo. Or, should it
focus on the application of a Logolike philosophy and seek to
serve a greater proportion of educational computing? What
implications would this have for SIGLogo?

I, for one, would welcome the transition of this publica
tion into an exchange to serve teachers using technology and
learner-based tools in a "Logolike" manner. To be sure, the
needs of Logo teachers should certainly continue to have high
priority. (For me, Logo is a near-ultimate learner-based tool.)
However, I believe that the needs of a larger group could be
served by the enrichment of teaching ideas and applications
from a wider variety of perspectives. To do otherwise may be
the same thing as applying the QWERTY phenomenon to this
publication.

I expect that the NECC Preconference Symposium on
Logo (see details on page 21) will be rather spirited as this
issue is discussed. If you are coming toNECC, I hope that you
will attend this important meeting.

As ever, FD 100!

Tom Lough
Founding Editor

P0Box394
Simsbury, CT 06070

··~~~.i~lii~····~6.~t~•···
)'J~~~~~-~-i,u

May 1990 -----LOGO EXCHANGE ----.nii!Jat~· Page5

Thinking Non-mathematically About
Mathematical Physics Problems
by Eadie Adamson

One of the important characteristics of Logo is that you
can easily play around with procedures: changing inputs,
directions and even the order of events. A student can pose
many "what-if' questions without directly confronting the
underlying mathematics. This "mathworld" is akin to the
immersion we all go through as we learn language. A Logo
"mathworld" can provide a playground to encomage mathe
matical thinking very indirectly as procedmes are manipu
lated and the resulting visual display is closely observed. I
tend not to drink of myself as a mathematician, although I
recall that in school I was an excellent math student .• until I
got to statistics. However, I do like to play around intuitively
with ideas that are often strongly related to mathematics. I
don't apply any lengthy theorems or rules that I have learned.
I take a guess, look at the result, compare it with my mental
picture of what I want to see. (My mental model may not
always be accurate, but nonetheless) Then I make further
changes. Similarly, I make no claim to much knowledge
about physics, but ...

Recently in class we talked about the idea of simulating
a bouncing ball with Logo. Here was an opportunity to
explore a little physics and a little mathematics. I began with
a bit of experimenting from my own point of view. Now, I
knew about the parabolic curve which a bounce might follow,
but I also knew that the screen was too narrow for that to be a
good visual simulation. (I had already experimented with
adapting some ideas about programming a bouncing ball that
I found in James Hurley's Logo Physics.) A bounce which
traveled in a parabolic curve could easily wrap the screen
several times before a ball rolled to a stop.

The first idea my students had was a simple bounce. The
turtle was changed to the ball shape with its heading at 0:

to ball1
pu
setpos [-125 -80]
setsh 12
forward 10
bal11
end

If you try this procedure you will find that it makes a never
ending bounce. There's no elasticity in the ball at all. The
height of the bounce never changes and it bounces in exactly
the same spot each time. Most of us know from simple

observation that this is not an accurate representation of a
bouncing ball. My students decided to try an adjustment to
make the ball move. We assumed it would travel across the
screen from left to right, bouncing along the white bar at the
bottom of the Logo Writer page.

Ball2 requires an x-coordinate as an input for a starting
point. This gave us a little more flexibility in just where a
bounce might begin:

to bal12 :xcor
pu
setpos list :xcor -80
setsh 12
forward 10
wait 2
ball2 :xcor + 5
end

Using an input of -120, ball2 begins near the left side of
the screen. As we watched the simulated ball moving across
the screen, someone observed that a real ball's bounce gets
smaller the longer it bounces. The force is diminished with
each bounce. We tried it with areal ball. Could we change our
procedure to simulate that?

We decided we needed an input for bounce. The input,
which we named bounce, would diminish each time. Also,
the boys wanted the ball to move more slowly. The adjust
ments looked like this:

to bal13 :xcor :bounce
pu setpos list :xcor -80
setsh 12
repeat :bounce I 2 [forward 2]
wait 2
ba113 :xcor + 5 :bounce - 1
end

Better, but, whoa! Now we get an error message:

repeat d9esn't like -0.5 as input in
ball3

'.·

What was happening? The value of bounce was getting below
zero. When the value of bounce became zero, the boys
thought, the ball should stop. Instead, since the amount of
bounce was an input to repeat, Logo was balking at a negative
input for repeat In earlier work with polygons, the boys had
learned to write stop rules for recursive procedures. They
realized that something similar needed to be applied here. We
came up with a rule like this:

if :bounce = 0 [stop]

Page6 -----LoGo ExcHANGE---......~~ May 1990

Where should it go? The boys recalled drawing
"growsquare" which increases in size with each recursive
call and checks the size before drawing the next square:

to growsquare :size
if :size > 85 [stop]
repeat 4 [forward :size right 90]
growsquare :size + 5
end

The bouncing ball procedure should also check first if the
boWtce was zero. H so, the procedure (and the boWlcing)
should stop. The new procedme looked like this:

to ball3 :xcor :bounce
if :bounce = 0 [stop]
pu
setpos list :xcor -80
setsh 12
repeat :bounce I 2 [forward 2]
wait 2
ball3 :xcor + 5 :bounce - 1
end

Well, that does stop the boWlcing, but we compared what
happened to a real bouncing ball. A ball tends to roll a bit after
it stops bouncing. How to add that? And when? We watched
a boWlcing ball for a while and thought about what happened
"procedurally." The bounce needed to stop before the roll
began. We decided first to try writing a simple roll procedure:

to roll
setx xcor + 1
wait 1
end

Typing roll and pressing Retnrn did not get the ball very far.
Someone suggested using a repeat:

repeat 10 [roll]

That looked a little better. Now we had areal problem: how
could we connect it to the bounce procedure? Someone
thought of putting the word roll at the end of the boWlce, right
beforethewordend. Somepeoplesaid,"Butthatwilllookjust
like it did when we just typed roll and pressed Retnrn. We
should use a repeat also." They decided to try it and see what
would happen.

to ball4 :xcor :bounce
if :bounce = 0 [stop]
pu
setpos list :xcor -80
setsh 12

repeat :bounce I 2 [forward 2]
wait 2
ball4 :xcor + 5 :bounce - 1
repeat 10 [roll]
end

The roll seemed remarkably long! What was happening
here? Time to think about recursion! Although the boys had
used recursion previously. they had no way to relate to the
complication they had just injected into the situation. Rather
than try to give a long verbal explanation of what was
happening, I decided that having Logo report on its progress
would help explain what was happening. I suggested that we
add a line to the end of the roll procedure, so that roll now
looked like this:

to roll
setx xcor + 1
wait 1
show "FINISHED!
end

To the boys' surprise, when we tried the bounce procedure
again, we got a long string of FINISHED! Now I could
explain a little more about recursion. In fact, we could now
simulate it with a little recursion-play to make the process
clearer. Here another command was added after the recursive
call and before the end statement. This kind of recursion is
called embedded recursion, as opposed to the tail recursion
used in earlier procedures. Everyone began to see that
embedded recursion had a delightful but unexpected result as
each "Little Person" finished its task (to use Brian Harvey's
analogy from his Computer Science Logo Style).

The boys finally concluded that the repeat command for
roll was unnecessary, for in fact, it made the roll far too long.
Now they could understand a little better why that was so. We
eliminated the repeat so that our bounce now looked like this:

to ball4 :xcor :bounce
if :bounce = 0 [stop]
pu setpos list :xcor -80
setsh 12
repeat :bounce I 2 [forward 2]
wait 2
ball4 :xcor + 5 :bounce - 1
roll
end

Once satisfied with this partial "cure," we eliminated the
show at the end of the roll procedure.

Notice how many times the students have made real-life
observations, made adjustments in procedures, and compared

May 1990 -----LOGO EXCHANGE-----~~~~· Page7

the simulation with the real-life action. Also notice that the
conversations are not so much involved with the fonnal
mathematics or the physics as with the changes that will make
the simulation more real for them. They made their own
mistakes and then, when they saw the result, did the correcting
themselves. The rules they followed were those needed to
write procedures using what Logo grammar they knew, but
they were using this skill to get a visual result, and then they
reformulated their ideas based on the results.

We have not yet carried this experiment much further, but
in what we have created thus far we have a beginning model,
not yet "correct" The students have learned about observa
tion, adjusunent of theories, about the difference between a
simulation and areal-life action. They know that the ''bounce"
is still not perfect, but now they can begin to think more about
the nature of a bouncing ball from a different perspective.
They may even pay more attention when a ball bounces now,
recalling the experience of trying to program a simulation.
They have also gotten a good look at a new way to use
recursion, one which they have not encountered before. Soon
someone will undoubtedly want to make an animation which
lets the ball shape "squish" when it hits the ground and then
expand as it rises. When the students examine the procedure
closely, they will discover that the ball moves forward after it
bounces. Their own observations will be enough to tell them
that this is not what happens, that instead the ball moves
forward while in the air. They will need to fmd a way to
express this in Logo.

The kind of learning these students have experienced, in
which we did not attempt to construct any "laws" of physics,
nonetheless has been powerful learning. They have been
experimenting with very sophisticated ideas. It has placed
them, as ftfth graders, in a position to be remarkably more
receptive to some ideas about physics in the world about them.
In the context of their explorations they have drawn on their
own knowledge, made observations, and attempted to express
them in a Logo procedure designed to simulate the real world
action in two dimensions. In addition to their growth in
understanding of the world about them, their sophistication in
working with recursion has undoubtedly been advanced a bit.

References
Harvey, Brian (1985). Computer science Logo style: Volume

I. Cambridge: :MIT Press.
Hurley, James P. (1985). Logo physics. New York: Holt,

Rinehart and Winston.

Eadie Adamson
1199 Park A venue, Apt 3A

NewYork,NY 10128

How to add spice
to your lessons

TO ADD.SPICE
Buy Logo Innovations.
Pick one of 18 projects.
Use it with your class today.
Show others the neat things you

can do with Logo.
END

Logo Innovations is a spice that can perk up your
classroom lessons. While other Terrapin products
focus on one subject in depth, Logo Innovations is
the seasoning that will complement any curriculum.

The design aJ left was generated
using the Mandala activity.
This mandala is a random
symmetrical design, a perfect
Logo application.

Choose from 18 Logo Innovations activities

Logo Miniature Golf-teach estimation and strategy
Astronomy--create constellations using Logo
Logo Weather Station--connect your computer to

the outside world and monitor weather conditions
Proportions-practice ratios using triangles
Little Turtle Goes to a Party-introduce young

learners to directions through a delightful story
Vectors-use simple Logo commands to add vectors

Plus 12 more projects to explore!

The double-sided disk contains 19 ready-to-use
programs, and the 32-page resource guide includes
three off-computer activities.

See what other teachers are doing with Logo
order your copy today!

Terrapin.. Software
400 RiverSide. Street

(207) 878-8200
Portland, ME 04103

Name ________________________________ _

Admess ____________________________ ___

City _________ State __ Zip __ _

I am enclosing a check to Terrapin for $14.95.

Please check the version of Logo you have:

_ Terrapin Logo for the Apple _ Logo PLUS

PageS -----LOGO EXCHANGE ----.n.-.~. May 1990

A Summer Program of
Words and Lists
by Dorothy Fitch

When Logo users who are comfortable with turtle graph
ics first encounter words and lists, their reaction is often
something like "Words and lists are too complicated," or
"What in the world would I use them for?"

Words and lists really aren't all that complicated, but it
may be helpful for you to see some examples where you know
in advance what the programs are going to do. The goal of this
column is not necessarily to teach you lots of things about
words and lists, but to familiarize you with what word and list
commands will allow you to do and why you might want to use
them.

Here's a scenario that will help introduce you to words
and lists:

You have volunteered (or been volunteered) to print up
song sheets for sing-along time at summer camp this summer.
As you sing the songs to yourself, you wonder if there isn't
some better way to print out the lyrics than to sit down at the
typewriter (or word processor) and type every word of every
verse of every song. That's the right idea! If you can find
repeated patterns, then you can get Logo to help you out

These particular songs have been selected not because
they are the campers' favorites, but because they represent
different song forms that lend themselves to being pro
grammed, especially in Logo. With song lyrics as a basis, you
can learn about musical form and words and lists-they go
together perfectly.

One of my favorite college courses explored folklore. We
studied folk songs, stories, hop-scotch patterns, and counting
out rhymes. They are universal-timeless-and found in fasci
nating variations throughout the world. As I later learned
Logo, thinking about folk song forms helped me understand
words and lists. Maybe it will help you!

Let's see how words and lists can be used to print song
lyrics of various types using Logo. In these examples, any text
following a semi-colon contains explanations and comments
to you. You do not need to enter them into your program
(although you can if you want).

Circular Form
The first text is not really a song, but a rhyme that

originated in Wisconsin, home of many Scandinavians. It
goes something like this:

My name is Yon Yohnson,
I come from Visconsin,
I vork in the lumberyards there.
Oh, the people I meet,
As I valk down the street,
They say "Hello"
I say "Hello"
They say •'What's your name?"
I say,
My name is Yon Yohnson,
I come from Visconsin, (etc.)

Other example of songs in circular form are the perennial
favorites •!here's a Hole in the Bucket" and ••Found a
Peanut"

Using Logo
Printing the lyrics to this rhyme is easy. Each line of text

is printed to the screen using the PRINT command. Then to
keep the rhyme going forever, use tail recursion, which calls
the same procedure again. In the following example, the last
instruction calls itself. Since there is nothing to stop the
program, it will continue forever. Type the procedure and
then type GREET to watch it run. To pause the text as it is
printed to the screen, press Control-W; continue it by pressing
any key. Stop the program with Control-G.

TO GREET
PRINT [My name is Yon Yohnson,]
PRINT [I come from Visconsin,]

continue in the same way with rest of rhyme ...

PRINT [They say, "What's your name]
PRINT [I say,]
GREET
END

; this recursive call makes the song circular

Verse and Refrain
A common song form is that of verse and refrain (or

stanza and chorus). One familiar example is Yankee Doodle.
Here's a program that prints a couple of verses and refrains.
Although you have to type the words for each verse, you only
have to enter the refrain once! You can add other verses in the
same manner.

p

May 1990 -----L 0 G 0 EXCHANGE ----aDJ-~· Page9

Using Logo:

TO YANKEE
VERSEl
REFRAIN
VERSE2
REFRAIN

END

TO VERSEl
PRINT [Verse 1:]
PRINT [Father and I went down to camp]
PRINT [Along with Captain Gooding,]
PRINT [And there we saw the men and

boys]
PRINT [As thick as hasty pudding.]
PRINT [] ; this prints a blank line

END

TO REFRAIN
PRINT [' ' Yankee Doodle keep it up,]

; In MIT Logo dialects, you

PRINT [' ' Yankee Doodle dandy,]
; can include spaces inside

PRINT [' ' Mind the music and the step
and] ; apostrophes

PRINT [' ' With the girls be handy!]
PRINT (]

END

TO VERSE2
PRINT [Verse 2:]
PRINT [And there was Captain

Washington]
PRINT [Upon a slapping stallion]
PRINT [A-giving orders to his men,]
PRINT [I guess there was a million.]
PRINT [)

END

Progressive Chain
In a progressive chain song, there is a verse about each

item in a sequence, such as numbers, days of the week, months
of the year, etc. In this familiar counting song, the numbers
decrease to zero, at which time the song ends.

Using Logo:
Here is an efficient way to print all the words to 100

Bottles of Beer (or pop, or whatever) On the Wall using just
one procedure:

TO BOTTLES :NUMBER
IF :NUMBER = 0 THEN STOP
(PRINT :NUMBER [bottles of beer on the

wall,])

(PRINT :NUMBER [bottles of beer,])
PRINT [You take one down and pass it

around,]
(PRINT :NUMBER - 1 [bottles of beer on

the wall.])
PRINT [] ; prints a blank line
BOTTLES :NUMBER - 1

END

Run the program by typing BOTILES 100. This starts
running the B01TLES procedure with the value of :NUM
BER at 100. Every reference to :NUMBER will be replaced
by 100 when the program runs. The parentheses around the
entire PRINT statement keeps the number and the rest of the
sentence together.

At the end of the procedure is a recursive call to the same
B01TLES procedure, but the new value of :NUMBER will be
the current value of :NUMBER (100) minus 1. Thus, the next
verse begins ''99 bottles of beer on the wall."

The conditional statement at the beginning (IF :NUM
BER= 0 THEN STOP) keeps track of the value of :NUMBER
and stops the program as soon as it becomesO. If you leave that
line out, you '11 eventually be singing "-1 bottles of beer on the
wall."

If you don't like the fact that it prints "1 bottles of beer",
you can always make it print "bottle(s)." (Yes, it is possible
to print "bottle" and "bottles" at appropriate times, but re
member, this is a beginner's column; we'll leave fme tuning
to the experts for now!)

Cumulative Song
In a cumulative song, there is a verse about each item in

a sequence, just as in the progressive chain. However, in a
cumulative song, none of the items ever gets thrown away.
Each verse contains the current item, plus all that has come
before. Examples of cumulative songs are "There's a Hole in
the Bottom of the Sea," "Old MacDonald Had a Farm," and
the seasonal favorite used in the example below. (If we sing
it all S1P.f1mer, maybe we'll remember the words next Decem-
ber!) . .

Using Logo:
This song contains some constant information: the list of

gifts and the ordinal number associated with each day (first,
second, third, etc.). We could make these global variables
(using a MAKE statement), but these really aren't variables;
they're constants. They don't change during the running of
the program. So, the program below includes procedures that
output a list for the GIFTS and DAYS. As you become a more

Page 10 -----L 0 G 0 EXCHANGE -----~~~~· May 1990

experienced programmer, you will write more and more
procedures that output information (also called operations or
reporters). They are very powerful types of procedures and
help make your programs much easier to write and read.

This program "sings" The Twelve Days of Christmas.
Type 12DA YS to begin. after entering all the procedures.

TO 12DAYS; this is the main program, whicluimply calli

SING 1 ; the SING procedure with a starting value of 1

END

TO GIFTS ; this is the procedure that stores the list of gifts

OUTPUT [[and a partridge in a pear
tree.] [2 turtle doves,] [3 French
hens,] [4 calling birds,] [5 golden
rings,] [6 geese a-laying,] [7 swans
a-swirmning,] [8 maids a-milking,] [9
ladies dancing,] [10 lords a-leap
ing,] [11 pipers piping,] [12 drum
mers drumming,]]

END

TO DAYS ; this is the procedure thatston:s ordinal nwnbers

OUTPUT [first second third fourth
fifth sixth seventh eighth ninth
tenth eleventh twelfth]

END

TO SING :DAYNUMBER
; this is the main part of each verse

IF :DAYNUMBER > 12 THEN STOP
; stops when nwnber 13 is reached

; the next line looks up the current nwnber in DAYS (first,

second, etc.)

PRINT [On the] ITEM :DAYNUMBER DAYS
[day of Christmas])

PRINT [my true love gave to me:]
; this next line calls GET.GIFT to show the cum:mt list of gifts

; remember :DA YNUMBER is the current day nwnber

GET.GIFT :DAYNUMBER
PRINT [] ; printsablankline

; sings the verse with the next nwnber

SING :DAYNUMBER + 1
END

TO GET.GIFT :NUMBER
; This procedure prints the accumulated gifts for each verse

; The next line stops when there are no more gifts

IF :NUMBER = 0 STOP

; The Dext line prints a space, then looks up and prints the gift for the

cumnt :NUMBER

(PRINT "' ' ITEM :NUMBER GIFTS)
; The next line calli a copy of GET.GIFT with the previous

day's nwnber

GET.GIFT :NUMBER - 1
END

The primitive ITEM (used in the SING and GET.GIFT
procedures above) reports information from a list It takes two
inputs: a number and a list. The 'list used in the instruction in
the SING procedure is the one returned by the DAYS proce
dure. The list used in GET.GIFT is the one output by the
GIFTS procedure. If you type PRINT ITEM 3 GIFTS, for
example, Logo responds with the word "three French hens."
The GET.GIFT procedure starts with the current day and
prints the gift for that day, the gift for the day before, the gift
fortheday before that and so on until it runs out of days. Then
it goes on to the next verse. This program is rather compli
cated, but knowing what it is supposed to do makes it easier to
understand.

I hope that these ideas will get you interested in learning
more about words and lists in Logo. Over the summer, you
may want to read one of the following books for further
information and instruction:

Birch, Alison (1986). The Logo project book: Ex
ploring words and lists. Portland, ME: Terrapin
Software, Inc.

Goldenberg, E. Paul and Feurzeig, Wallace (1987).
Exploring language with Logo. Cambridge, MA:
The MIT Press

Have a great summer. See you next year!

Dorothy M. Fitch,
Director of Product Development

Terrapin Software, Inc.
400 Riverside Street
Portland, ME 04103

(207) 878-8200

May 1990 -----LOGO EXCHANGE -----l~ Page 11

by Glen Bull, Gina Bull, and Judi Harris

In his foreword to Mindstorms, Seymour Papert de
scribes his childhood fascination with gears. At an early age
he became intrigued by the movement mtios produced by
rotating gear combinations of different sizes. Gear mtios
became the method which he used to conceptualize the multi
plication tables, and later differential gears became the model
for building equations with two variables, such as 3x + 4y =
10.

In Papert' s terminology, gears served as a tmnsitional
object. They provided a concrete object that he understood
which could be used as the basis for building active experien
tial understanding of a new abstraction: mathematical equa
tions. Papert proposed that computers could be used similarly
to provide inexpensive, flexible tmnsitional objects. In es
sence, computers could be used to create "electronic gears."
An electronic turtle on the computer screen could serve as a
tmnsitional object because children could relate the move
ment of the turtle on the screen to the movement of their own
bodies in space. This might provide an accessible and moti
vating method for explomtion of geometry and other mathe
matical concepts.

At the time thatMindstormswas written, this was a mther
mdical way of thinking about using the computer in education.
Previously, the chief tendency had been to think of the
computer as a mechanized replacement for the teacher, mther
than as a tool that could be used by the teacher or learner as a
bridge to other concepts.

Over the years, Logo and turtle geometry provided a
rather dumble tmnsitional object. When Logo first experi
enced tremendous popularity, there arose a debate as to
whether Logo was the only valid tmnsitional object that could
exist on the computer. This might be termed the phase of Logo
as religion.

Enter: the Heretics
At about the same time, Bob Tinker was evolving the

concept of microcomputer-based laboratories (MBL) at the
Technical Education Research Centers (1ERC). The concept
of MBL is that rather than using the computer to simulate
scientific experiments, probes and sensors attached to the
computer could be used to collect actual data to conduct real
scientific experiments. Many of these ideas were described in
a column with the wonderful title of"Tinker' s Toys" which he
wrote for 1ERC's Hands On! newsletter. In one of these
columns Bob noted that for some MBL applications Logo
lacks the speed required to acquire some types of data in real
time.

This was hardly a startling observation, since Logo is an
interpreted language withmodemte though not blinding speed
when implemented on an eight-bitmicroprocessor. However,
at the planning meeting for the first national Logo conference,
this revelation was treated as pure heresy by some. In the
midst of an active discussion, Hal Abelson (of M.I. T.) finally
said, "Bob Tinker's a pretty good guy. If he's making these
observations, maybe we should be listening to what he's
saying."

In response to the discussion that followed, Abelson said,
"Logo is not the only way." When challenged to list other
approaches, Abelson thought for a moment, and then said,
"Well, Boxer is a possible model." Boxer is a programming
language inspired by Logo that uses windows (or boxes, hence
the name "Boxer'') as containers for procedures. At present
Boxer requires the power of a Sun workstation with several
megabytes of memory to run. But then again, when Logo was
frrst developed, microcomputers had not even been con
ceived, and hence Logo was not generally accessible in the
public schools either. Readers interested in the chamcteristics
ofBoxercanrefertothecitationlistedattheendofthisarticle.

Hal Abelson probably did not expect casual comments
made over coffee to be remembered nearly a decade later, but
his remarks get at the essence of an important issue. "Is Logo
the only valid tmnsitional object, or are there other ap
proaches?" Before considering this question, we would like
to tum the clock forward a few years to a discussion held with
Tim Riordon while walking on an Atlantic beach. At that
time, we were considering the phenomenon of Logo as
dogma.

Dogma in this case refers to blind adherence to an edict
without a sensitivity to reasons underlying what may have
been intended as a guideline mther than a stricture. Recursion
is a good case in point. The capability for recursion is one of
the more desirable chamcteristics of Logo. Thousands of
words have been written about recursion in Logo. Some have
interpreted this to mean that recursion should always be used
and that loops should never be used. In point of fact, there are
instances in which a loop is more efficient than a recursive
procedure. For example, a loop may be appropriate in a
condition in which an external switch or sensor attached to the
computer is polled.

As we discussed this, we were bemused by the vehe
mence with which some at that time attacked the use of any
non-recursive procedure, and spontaneously invented the
conceptoftheLogopolice. TheLogopolice, wedecided, will
monitor your behavior and break down your door at night and

Page 12 -----L 0 G 0 EXCHANGE -----ll~~· May 1990

Educ8t i on81 Appl i c8ti ons of Computers

Dri 11 &
Practice

CAl

Tutorials

carry your computer away if you are caught using a non
recursive procedure, or engaging in any other form of un
Logolike behavior. Although the Logo police are a myth (as
far as we know), at times it does seem as though the rigid
application of dogma stifled the very creativity and innovation
that Logo was designed to express.

CAl and Learner-Based Tools
An important aid to our thinking about this issue soon

emerged from the Technical Education Research Centers.
This aid was the notion of learner-centered software (Mokros
and Russell, 1986; Russell, 1986). At that time Susan Jo
Russell, a researcher in special education, was concerned
about the almost exclusive use of Computer Assisted Instruc
tion (CAl) applications in the field of special education. She
and her colleagues completed a national survey and found that
at that time almost all uses of the computer in special educa
tion classrooms consisted of CAl applications such as drill
and-practice activities. They found that although teachers
expressed interest in more open-ended uses of the computer,
such as Logo, they found it difficult to measure their effects,
and therefore difficult to justify their use. Russell and com
pany suggested ways in which teachers could extend their
own notions of instructional objectives to include goals for
learning which were less content-specific, more process
oriented, yet just as documentable as those for CAl. Russell
(1986) took the opportunity to point out that computers had
the potential to cause teachers to reconsider not only how they
were teaching, but also what they were teaching.

Russell and other researches at TERC described learner
centered software as an alternative to CAl which "has particu
lar pedagogical characteristics which place more cognitive
control in the hands of the learner" (Mokros and Russell,

Teaching Tools

Product 1 v 1t y
Tools

Learner-Based
Tools

1986, p. 185). For several years we have been using a
modification of their term: learner-based tools. By this we
mean software that is open-ended (having a variety of flexible
outcomes) and learner-centered Generally such software is
distinguished from "utilities" or "productivity tools" by the
potential for exploration or discovery. Logo is an example of
a learner-based tool. Other early examples, we realize in
retrospect, were attractive to us because they seemed Logo
like when they first came to our attention. They include Bob
Tinker's micro-based labs as well as the talking word process
ing software developed by Teresa Rosegrant (Rosegrant and
Cooper, 1985;1987.)

Interactive Structures
Good CAl programs can be very effective teaching

devices. Unfortunately, good CAl can be expensive to pro
duce. It has been estimated that it may take 200 hours of
development to produce one hour of effective CAl. At that
rate, one year of work is required to produce just ten hours of
CAl. Another problem can be that the program may not
present the information as the teacher would have preferred.

In traditional CAl, the computer replaces the teacher to
some extent. In a drill-and-practice application, the computer
drills the student on facts that have been taught by the teacher.
In a tutorial program, the computer actually teaches the fact as
well as directs and evaluates the student's practice efforts.
There is a two-way interaction that occurs between learners
and computers when students use CAl.

~!ay 1990 -----L 0 G 0 EXCHANGE ----aiiJt>~ Page 13

Two-Way Interaction
Computer-Assisted

Instruction

In contrast, effective use of a learner-based tool requires
a three-way interaction between the teacher, the computer,
and the learner (Bull, Cochran, and Snell, 1988; Bull, Lough,
and Cochran, 1987; Cochran and Bull, 1985). Logo is a good
example of this type of interaction. The turtle is used by the
teacher to illustrate the relationship of a new concept to
existing knowledge.

Three-Way Interaction
Teaching Tools

Once the learner understands the relationship, the student
can use the computer environment to explore the terrain.
However, it is necessary for the teacher to provide "nudges"
from time to time that edge the student into arenas that are apt
to lead to productive discovery. One of the frequent miscon
ceptions about this type of learning is that it is a "hands-off'
process in which the teacher allows the student to discover
concepts independently andratherrandomly. It is to be hoped

that discoveries of these types will occur, but facilitation by
the teacher is a necessary and integral part of the process.

There are several ways to distinguish CAl from learner
based tools in the classroom. One is to ask whether a two-way
or three-way interaction is occurring. Another important way
is to determine whether the application is extensible. In some
respects, a good CAl program is like a cleverly designed
maze. If the program has been well-designed, the user will
never be aware that there are boundaries beyond which it is not
possible to go. However, CAl programs are of necessity finite
with fixed boundaries. (It is possible that the area of artificial
intelligence (AI) will change this, but AI applications are
unlikely to affect public education in this century.)

In contrast, learner-based tools are always extensible.
This means that the user can create uses and applications of the
tool that were not envisioned by the developer. The extensible
quality of these tools shifts the locus of control to the learner,
which accounts for the derivation of the term learner-based
tool. Logo is one such tool. Are there others?

Building a Learner-Based Toolkit
WesuggestthatBoxer,andcertainusesofprogramssuch

as Talking TextWriter, as they were envisioned by Teresa
Rosegrant, qualify as learner-based tools. Moreover, many
hypermedia applications, as they have evolved over the last
decade, could meet the criteria for this type of tool, depending
on their use. In a hypermedia system, learners can move
within a universe of knowledge, creating trailmarks and links
as they go. Because the user directs the direction of travel, the
locus of control is with the learner. It is true that the body of
knowledge is flnite. However, the 650 megabytes of informa
tion that can beplacedonaCD-ROM (for example) constitute
a rather large conceptual universe. For purposes of compari
son, it can be noted that everything that Shakespeare wrote
will flt in 7 to 8 megabytes of space.

HyperCard, written by Bill Atkinson, popularized the
current interestin hypermedia programs, and now numerous
hypennedia programs are available on almost all brands of
computers. Bill Atkinson acknowledges that Logo was one of
the inspirations that he drew upon as he was developing
HyperCard. HyperCard extends the concept of "object
oriented programming" (OOP) which is found to a lesser
extent in Logo. Turtles and sprites are examples of objects
that can be programmed in Logo. Once the turtle is assigned
characteristics (heading, pen color, etc.) it maintains those
characteristics until they are changed. Some types of sprites
even can be assigned a velocity so that they stay in motion until
told to stop. HyperCard has many more objects that can be

Page 14 -----LOGO EXCHANGE----~ May 1990

programmed in this way, serving as actors in a "script" created
by the user. Certainly it is possible to do many of the same
kinds of exploratory, extensible, learner-centered activities in
HyperCard as in Logo. Hence, we believe it qualifies for the
term "learner-based tool."

These types of similarities aside, we have found that
teachers who use Logo can quickly develop similar teaching
tools with HyperCard. Elsewhere in this issue of Logo
Exchange, an article even describes a means of creating of a
HyperCard turtle, illustrating the range and flexibility of this
environment. Naturally Logo and HyperCard each have
certain strengths that are not present in the other, they are not
clones. However, we believe that the uses to which these
programs can be put are similar enough that they should be
placed in the same phylum.

Shall We Concentrate Upon the Tools or Their Use?
Learner-based hypermedia applications share another

important characteristic with Logo. Although the learner may
have almost unlimited directions to travel, it is likely that the
journey will be facilitated by the presence of a guide who has
previously covered the terrain.

The issue of interest here is not so much the tools
themselves but their actual use. It is possible to write a drill
and-practiceortutorialprogramwithbothLogoandhyperme
dia programs. In fact, many teachers' initial explorations of
Logo often involve development of tutorial programs. Some
mathematics books for elementary grades contain examples
of drill-and-practice programs written in Logo. Therefore it
might be more accurate to say that Logo can be used as a
learner-based tool than to say that Logo itself is such a tool.

The question we raise is whether the issues discussed in
the Logo Exchange should have to do only with the program
ming language Logo, or a philosophy of teaching. We believe
that the Logo Exchange is more about a pedagogic philosophy
than about programming methods in a specific language. If
Papert had focused on the specific transitional object of gears
rather than the larger educational issues, he might have spent
a lifetime refining more and more sophisticated gear systems
that could be brought into the classroom as educational toys.
ThiscouldhaveledtoclassicssuchasGearStorms: Children,
Cogs, and Powerful Machines.

In the early part of this century many carriage manufac
turers defined their task as production of horse buggies and
subsequently went out of business. Others defined their
business as transportation and survived This is why every car
made by General Motors has "body by Fisher" (a large

carriage manufacturer that survived) embossed on a plate on
the door frame. At this juncture the issue of whether we are
more interested in Logo as a programming language or Logo
as an approach to teaching with computers is a crucial one.

Logo's Evolutionary Pattern
During the 1970s an almost unnoticed revolution oc

cmred in the field of paleontology. This revolution, described
by Stephen Jay Gould in his book, Wonderful Life: The
Burgess Shale and the Nature of History, resulted in a reex
amination of the history of life, including our own evolution.
Gould describes the shift in thinking that occurred in the
following way,

... in an error that I call 'life's little joke' (Gould,
1987), we are virtually compelled to the stunning
mistake of citing unsuccessful lineages as classic
'textbook cases' of 'evolution: We do this because
we try to extract a single line of advance from the true
topology of copious branching. In this misguided
effort, we are inevitably drawn to bushes so near the
brink of total annihilation that they retain only one
surviving twig. We then view this twig as the acme
of upward achievement, rather than the probable last
gasp of a richer ancestry. (Gould, 1989, p. 35)

Gould notes that the view of evolution as an inexorable
march of progress, culminating with the person telling the
story at the peak of the evolutionary ladder, is an appealing
one. However, he observes that the real success stories of
mammalian evolution-such as bats, antelopes, and
rodents-are the ones which present us "with thousands of
twigs on a vigorous bush." Would it be more productive to
consider Logo as the terminating event in the evolution of
educational software, or should it be considered as one branch
in a broader lineage?

One perspective is that Logo lies at the peak of a software
evolution, unrelated to any other lineages. Rather than think
ing of Logo as the end of an evolutionary line, we find it more
productive to think of it as one of many examples of a thriving
lineage oflearner -based tools. Since Logo was one of the first
of these educational tools, we will always have a strong
interest in its use. However, there are now many interesting
companion tools to explore as well. Thus we move from the
Logo as Religion through Logo as Dogma, to the Logo as
Exemplar phase.

A Proposal: Logo as Exemplar
To signal the extension of a welcome to discussing all

types of Logo-like tools, we propose a change in title of Logo

May 1990 -----LoGo EXCHANGE---......,~ Page 15

Electronic Cui de Sac?

Logo

Exchange magazine to Technology and Teaching Tools (or
Journal of Learner-Based Tools, or a similar, open-ended
title.) When Tom Lough founded the Logo Exchange, Logo
was the only example of this new instructional use of the
microcomputer. Now that it has been joined by many other
companions, we think it desirable to welcome them into the
fold as well. Is Logo a transitional object leading to new and
ever more interesting educational applications ranging from
Boxer to HyperCard, or is it an electronic cui de sac? At one
time it was not uncommon for many teachers to employ Logo
as the sole tool for all applications from word processing to
computer art. Now teachers have a much wider instructional
computing tool kit. Rather than ignoring these small mam
mals (which have been busily eating dinosaur eggs) in the
instructional computing community, we would like to extend
a welcome.

In the seventies Logo was in its infancy. In the eighties
it entered its adolescence. In the nineties it approaches
adulthood. Papert used the gears of his childhood as a
transitional object, which was used to found a new philosophy
of educational computation. For many of us, Logo itself has
served as a transitional object that has helped us comprehend
a new way of using computers instructionally. Although we
have not yet seen any journals devoted to Boxer, there are
many journals and newsletters devoted to hypermedia appli
cations. However, a careful examination reveals that the
majority of these articles describe methods for production of
CAl with these new systems. There should also be a place for
exchanging ideas about use of these new systems forconstruc-

Or Evolving Tools?

Logo

I
tion of the learner-based tools for which they are so admirably
suited.

Over the years a number of people who were formerly
active appear to have dropped out of the Logo community:
Tim Riordon, Steve Tipps, Paula Cochran, etc. (Vole mention
these names because we have coauthored Logo books with
each of them, but we are sure that you could mention many
others.) Rumors that these individuals have been abducted by
the Logo police are completely untrue! In many cases, they
are still actively using learner-based tools, but are employing
a range of many different tools rather than Logo alone. We
would like the Logo Exchange to follow their good example.

If there were any truth to the rumors of the Logo police,
we would have certainly have heard from them by now as a
result of writing this article. We can assure you that we will
all be back next fall, writing our columns as we have in years
past, although the content of the articles will continue to
evolve. Er,onemoment ... What's that?!!? They'recoming
in the front door! Glen, you go out the back. Gina, you take
the manuscript Run, Judi, RUN!!

References
Bull, G.L., Cochran, P.S., & Snell, M.E. (1988). Beyond

CAl: Computers, language, and persons with mental
retardation. Topics in Language Disorders, 8 (4), 55-
76.

Bull, G. L., Lough, T. , & Cochran, P. (1987). Logo and
exceptional individuals. In J. D. Lindsey (Ed.),

J

Page 16 -----LoG 0 EXCHANGE ----aDJat~· May 1990

Computers and exceptional individuals (pp. 169-187).
Columbus, OH: Merrill.

Cochran, P. S., & Bull, G. L. (1985, November). Creating
a shared context: Using a computer in language
therapy. Paper presented at the annual convention of
the American Speech-Language-Hearing Association,
Washington, D.C.

diSessa, A.A., & Abelson, H. (1986). Boxer: A recon
structable computational medium. Communications of
the Association for Computing Machinery, 29 (9), 859-
868.

Gould, S.J. (1989). Wonderful life: The Burgess shale and
the nature of history. New York: W.W. Norton &
Company.

Mokros, J .R., & Russell, SJ. (1986). Learner-centered
software: A survey of microcomputer use with special
needs students. Journal of Learning Disabilities, 19
(3), 185-190.

Rosegrant, T. J., & Cooper, W. (1985). Listen to Learn
[computer program]. Boca Raton: ffiM.

Papert, S.P. (1980). Min.dstorms: Children, computers, and
powerful ideas. New York: Basic Books, Inc.

Paper, T.Q. (1980). Gear Storms: Children, cogs, and
powerful Machines. Nuevo York: Alternate Universe
Press.

Rosegrant, T. J., & Cooper, W. (1987). Talking text writer
[computer program and teacher's manual]. New York:
Scholastic.

Russell, S. J. (1986). But what are they learning? The
dilemma of using microcomputers in special education.
Learning Disability Quarterly, 9, 100-104.

About the Authors

Glen Bull has written a column for the Logo Ex
change since it was founded. Gina Bull was origi
nally a fme arts librarian, but changed careers as a
result of exposure to Logo. She subsequently ac
quired a graduate degree in computer science and a
position as a system administrator in a department of
computer science. Glen and Gina Bull currently
write a column, "Logo and Company," which ad
dresses the emerging array of .. Logo-like" tools.
Judi Harris is a columnist for the Logo Exchange,
and writes a Logo column for The Computing
Teacher as well. Collectively the authors have
written more than a hundred chapters, books, ar
ticles, and columns about Logo.

Editor's note: This manuscript was slipped over the transom
and was lying on the floor when we arrived at the office one
morning. Despite the fact that we have not yet been able to
contact Bull, Bull, & Harris, we would like to reassure you
that the conclusion to this article is a prank, resulting from
what we can only describe as a distinctly odd (not to say
sophomoric) sense of humor. However, if anyone should see
any of these individuals, we would very much like for them to
contact us.

The turtle moves ahead.

Introduction to Programming in
Logo Using Logo Writer

Introduction to Programming in
Logo Using Logo PLUS.

Training for the race is easier
with ISTE's Logo books by
Sharon Yoder. Both are designed
for teacher training, introductory
computer science classes at the
secondary level, and helping you
and your students increase your
skills with Logo.

You are provided with
carefully sequenced, success
oriented activities for learning
either Logo Writer or Logo PLUS.
New Logo primitives are de
tailed in each section and open
ended activities for practice con
clude each chapter.
$14.95 + $2.65 shipping per copy

Keep your turtles in
racing condition.

ISTE, University of Oregon
1787 Agate St., Eugene, OR 97403

ph. 503 I 346-4414

•

May1990 -----LOGO EXCHANGE---~~ Page 17

by Jandy Bird

While there are many ways of having swdents work
together using Logo Writer within a single school or class, it is
also possible to work cooperatively at a distance. My third and
fourth grade gifted/talented resource room group in Colts
Neck, New Jersey, had made contact with a fourth grade class
in State College, Pennsylvania. This contact had been estab
lished through acquaintances made at the ECCO conference
in Cleveland in the spring of 1988. We had begun the
exchange, not via telecommunications, but simply by mailing
letters and printouts of our Logo Writer work to each other.
After exchanging news about om respective programs and
Logo Writer interests, the Pennsylvania group sent us a chal
lenge. The challenge was to improve on a pacman game they
had begun, using Logo Writer.

It is worth confessing here that using LogoWriter to
recreate video games was not an idea that thrilled me at first.
However, I couldn't have been more mistaken, as the briefest
introduction of the idea led to an avalanche of ideas from my
students. The challenge spurred them into more advanced
areas of Logo Writer than they would have experienced, and it
enabled them to work as a group, in small groups, and
individually, as they wished.

The Pennsylvania group had, of course, first created a
pacman shape on the shapes page. In presenting their problem
to my group, I duplicated their shape and entered their pro
gram on the computer. My group saw the program, and spent
a full hour brainstorming improvements. The pacman was
shape 2. The program the Pennsylvania group sent was as
follows:

TO PACMAN
setsh 2
pu
setpos [-131 1]
tell 1
setsh 12
pu
setpos [111 1]
st
tell 0
right 90
repeat 115[st forward 1 wait 3 ht

forward 1]
end

They had used two blrtles, turtle 0 for the pacman and
blrtle 1 one for the circular goal. The pacman begins on the left

with the goal on the right, and pacman moves across the page
to the goal. The HT in the REPEAT command gives a slight
flashing effect as the turtle moves.

•
During the brainstorming session, weentered ideas on a

large monitor so the whole group could see easily. The first
thought was to add color, so we put in a SETC for the pacman
and for the circle. The group felt that the pacman should eat
the circle instead of disappearing, so the next problem was to
makethepacmanlookasifitwereeating, with mouth opening
and closing. To do this, we made a second pacman shape with
mouth closed, (shape 3). Then, by alternating the shape of
tmtle 0 between the two shapes, it appeared as if the pacman
was eating its way across the screen. Making the wait shorter
(from wait3 to wait l)alsomovedpacmanmore quickly. To
make the pacman "eat" the goal or food, SETC turned turtle
black. Finally, we used TONE to make pacman "burp" after
eating and INSERT to make the words print on the middle of
the screen. Our amended version was:

TO PACMAN
setsh 2
setc 4
pu
setpos [-131 1]
tell 1
pu
setc 3
setsh 12
setpos [111 1]
st
tell 0
setc 4
rt 90
repeat 115[setsh 2 st forward 1

wait 1 ht setsh 3 st forward 1]
st
tell 1
setc 0
tone 50 25
repeat 12 [insert char 32]
insert [YUMMY IN MY TUMMY ! ! !]
wait 30
ct
end

After this group session, the students had several avenues
they were anxious to pursue, and so they worked in small
groups on different problems. One group was to add ghost
figures, as in the real video game. This pair of third graders

Page 18 -----LOGO EXCHANGE---~ ... May 1990

spent time on the shapes page. Another group was to have
different foods of different colors, and to have different
sounding burps depending on the food. These fourth grade
girls experimented with sound, with IF and with COLOR UN
DER. Another student wanted to have pacman travel ran
domly around the screen, and to have something happen if/
when he ran into a ghost He also worked with COLORUN
DER and with RANDOM. After some time developing
different ideas, a single student was in charge of combining
and coordinating the different parts into a single version.

~

~-------------~--------- ...
The New Jersey students were not the only ones excited

by this process. The Pennsylvania group sent us another
version of their game, before they had received our response!
They had created an introductory screen, with flashing sign
"Pacman Video Game", and they, too, added sound in the
form of a musical introduction and music when pacman
reached the goal.

€: PACMAH IJ IDEO GAME

With another exchange, the school year was over. The
pacman fund of ideas was not, though. In the most advanced
version, the introductory screen flashed the sign, the pacman
appeared on the left of the screen with a dotted line to the
colored food on the right, the pacman "ate" the line across the
screen to the colored food and became "energized". When this
happened, he jumped around the screen, where there were
ghosts stamped at different random spots. If pacman hit a
ghost, all the ghosts disappeared and "No more ghoulies!"
appeared on the screen. Finally, the Pennsylvania group sent
a video about themselves while our group made one about the
sequence of pacman, showing the different versions.

All the versions of each group are not shown here for two
reasons. The first is that the final versions are quite lengthy.

Secondly, if you have a group interested in developing the
pacman idea, it would be better for them to develop their own
approach. The beginning procedures are shown here just to
get you started. The process was fun and exciting and the
pacman vehicle was familiar and appealing to the students.
The exchange challenge gave the students lots of incentive to
learn more LogoWriter. They explored how to move ran
domly, how to make sound, how to check using COLORUN
DER, how to integrate text and graphics, and much more. I
was reminded of an exercise most writing teachers know well.
In this exercise you begin with a sentence such as "The cat
ran" and have the group add adjectives, adverbs, and phrases
to develop a better sentence. You might end up with "The old
scruffy one-eyed cat ran crookedly but swiftly through the
hole in the fence chasing the escaped white mouse." The
pacman exchange involved a similar elaboration and showed
another way in which LogoWriter can encourage critical
thinking and creative problem solving through a cooperative
exchange of ideas.

Jan J. Bird, Ed. D.
Conover Road School

80 Conover Road
Colts Neck, New Jersey 07722

201-946-8590

SIGLogo Business
Meeting

Plan now to attend the SIGLogo
Business Meeting

atNECC '90
June'J.S-27

Opryland Hotel
Nashville, Tennessee

Meeting: Tuesday, June 26
12:00-2:00 pm

Place to be announced at NECC

. \

-~
'I

I
"'

:May 1990 ------L 0 G 0 EXcHANGE -----a~~- Page 19

Confluence: Logo, Educational
Technology, and Mathematics
edited by A. J. (Sandy) Dawson

Three experiences in the past year have led to the writing
of this column, the fmal one for Volume 8 of Logo Exchange.
Each experience in its own way caused me to reflect on the
confluence of mathematics, computer technology, and Logo.
In my mind I picture three mountain streams cascading down
narrow gorges, flowing across broad plains, joining together
(the confluence) to form a river of great breadth, depth and
power. In the case of mathematics, computer technology, and
Logo, the concern I have is whether or not we will see a
confluence which has great breadth, depth, and power, or if we
will witness a fragmentation and isolation of these with each
creating its own river of thought and action, unconcerned
about the paths taken by the other streams.

Let me deal with the experiences in the order in which
they happened but reversed from order noted above. First to
the Logo experience.

Last May at the Canadian Mathematics Education Study
Group (CMESG) meeting in St Catharines, Ontario, Canada,
I was a co-organizer, with Benoit Cote of the Universite du
Quebec Montreal, of a three-day, twelve-hour study session
on the topic of "Using computers for investigative work with
elementary teachers." The three four-hour sessions were
discussions centered around a Logo-based software called
"Les deux tortues" created by Benoit COte, and the set of
mathematical activities that this software allows. Although
the working group had been planned to focus on using com
puters in the context of elementary teacher training activities,
we ended up spending most of our time looking at the
mathematical activities, and discussing the role of computers
in mathematical learning. The system presented is the result
of an effort to build a bridge between computer activities with
the Logo turtle and middle school mathematics curriculum.

The final session of the three days concluded with a
general discussion on a question raised by me throughout the
workshop: do mathematical activities defined around com
puters induce a reduced view of mathematics? Much debate
throughout the three sessions focused on the supposed neu
trality of the computer.

This is where the second experience comes into play.
Last fall I taught a graduate level course called Selected
Topics in Educational Technology, the focus of which was C.

A. Bowers' recent book The Cultural Dimensions of Educa
tional Computing.

The question that was of central concern to Bowers, and
hence to the students in my course, was whether or not
educational technology and in particular educational comput
ing is neutral, in terms of accurately representing, at the level
of the computer program, the domains of the real world in
which people live. If the answer to this question is that it is not
neutral, the critically important question that follows is how
the technology alters the learning process (Bowers, p. 24).

In particular, Bowers contends that "computers foster a
digital, dichotomous, context-less, ultra rational form of
world view, which though extremely productive in many
ways, is also at the foundation of many misunderstandings
about the world." To paraphrase Gregory Bateson, if we
separate an object from its context we are likely to misunder
standit.

Computer educators perpetuate the view that the com
puter is culturally neutral, that it is simply a 'dumb' machine.
But this overlooks the fact that " ... the classroom strengthens
certain cultural orientations by communicating them to the
young and weakens others by not communicating them"
(Bowers, p.6).

Much debate throughout the three sessions focused on the
supposed neutrality of the computer and of Logo.

Bowers' conclusion, noted below, was hotly debated:

Thus the machine that the student interacts with cuts
out of the communication process (the reduction
phenomenon) tacit-heuristic forms of knowledge
that underlie commonsense experience. While the
technology amplifies the sense of objectivity, it
reduces the awareness that the data represent an
interpretation influenced by the conceptual catego
ries and perspective of the person who "collected"
the data or information. The technology also reduces
the recognition that language, and thus the founda
tions of thought itself, is metaphorical in nature. The
binary logic that so strongly amplifies the sense of
objective facts and data-based thinking serves, at the
same time, to reduce the importance of meaning,
ambiguity, and perspective. Finally, the sense of
history, as well as the cultural relativism of both the
student's and the software writer's interpretative
frameworks, is also out of focus. As a symbol
processing technology, the computer selects and

Page20 -----LOGO EXCHANGE---~~ May 1990

amplifies certain aspects of language " (Bowers,
pp. 33-34)

With these. discussions and the thoughts generated by
them rolling about in my mind. I embarked on the third
experience, one that I am still in as I prepare this column.
Since January I have been working with a group ofl5 secon
dary school mathematics teachers who are enrolled in a
specially designed (for them) masters program at Simon
Fraser University. During thecurrentsemesterthey are taking
a course with me called the Teaching and Learning of Mathe
matics. This course has looked at, most closely, the con
structivist orientation to the teaching/learning process in
mathematics education, and the debates that occurred in
recent years regarding the constructivist position.

Discussion in the class around the constructivist position
has brought to light a basic debate in mathematics itself,
namely, is mathematics created or is it discovered, a topic
addressed by such recent writers as Hawking in his A Brief
HistoryofTime,andPenroseinhisTheEmperor'sNewMind.
The question here is whether there exists an external mathe
matical reality independent of all observers that is discover
able, orwhethermathematics is purely and simply the creation
of the human mind. Penrose, for example, seems to waffle in
his answer to this question.

"But does it matter?" you might well ask. I think it does.
That is why the confluence issue has become important to me.

It would seem that if one believes

1. in an external reality independent of any human mind,

2. that mathematics is discovered and not created,

3. that computer technology is neutral and value-free,
and

4. that language is a conduit through which information
simply flows,

then this is a position incompatible with the philosophical
orientation of Logo pedagogy. Let me expand a bit on this
notion.

The above four points imply, I would argue, that there is
a body of knowledge external to all knowers that would form
the basis of a mathematics education. That being the case,
then the most effective means of having learners come to that
knowledge is to present it to them in efficient manner, such as

by using a computer technology that is value-free and neutral,
and by using instructional methods that establish a clear
conduit between the body of knowledge and the student's
mind. There would be no need for the learner to explore, to
create possible solutions, to guess and test, or to do any of the
things that constructivists advocate, because these would only
slow down and impede the acquisition of the required mathe
matical knowledge.

Indeed. it is just such an orientation that has permeated
mathematics education since public schools were invented.

But, of course, that is not the pedagogical foundations of
Logo, and this may in part explain why so few have adopted
a Logo orientation, and why so many reject any changes to the
mathematics curriculum, particularly changes that might in
corporate a Logo philosophy of teaching and learning.

Logo, in my view, is constructivist in orientation, which
means that

1. even if there is a reality external to the human mind, the
meaning of that reality still must be created by each
individual (this is the weak constructivist position),

2. mathematics is created, not discovered,

3. computer technology is not neutral and value-free, and

4. language is culturally biased (the only meaning that
words have, as Alice said, is that which we create for
them!)

To adopt this stance necessitates looking at the world and
our knowledge of it in very different ways than most of us are
accustomed to. This in turn causes a struggle so well docu
mented in the literature on change with respect to why indi
viduals do not change their world view and outlook on life.
The confluence of these four factors are the basis of the Logo
philosophy, in my view, and only when these streams merge
will we achieve a river of thought and action that has breadth,
depth, and power in an educational sense.

But if Logo and its many cousins (see Sharon Yoder's
editorial in the March 1990issueofLogo Exchange) are to be
embraced by the educational community, then those of us who
are already of the constructivist perspective will have to assist
others in coming to see the world in different ways. In so
doing, we will no doubt educate ourselves as others educate
themselves. But what educator could ask for more?

r:

May 1990 -----L 0 G 0 EXCHANGE ---......jiiJJI--

References
Bowers, C. A. (1988) The cultJU"al dimensions of educational

computing. New York: Teachers College Press.
Hawking.StephenW.(1988)Abriefhistoryoftime:Fromthe

big bang to black holes. New York: Bantam Books.
Penrose, Roger (1989) The emperor's new mind: Concerning

computers, minds, and the laws of physics. Oxford:
Oxford University Press.

A. J. (Sandy) Dawson is a member of the Faculty of
Education at Simon Fraser University in Vancouver,
Canada. He can be reached through Bimet as
userDaws@SFU.BITNET U

Page 21

Page22 -----LOGO EXCHANGE----~ May 1990

by Brian Harvey

The "Language Chauvinist" editorial attacks exagger
ated positions and thereby unfairly slights more moderate, and
I think justified, forms of language chauvinism.

Anyone who says that Logo is the only good language
everinventedwouldindeedbeabsurd. You'rerighttosaythat
languages must be evaluated in their historical context; the
advance from machine language to FORTRAN was probably
a bigger step than any single programming language develop
ment since then. Still, precisely because FORTRAN was the
first high-level language, it is full of design flaws that were
unavoidable 30 years ago but well-understood today. There
is still a lot of old FOR 1RAN-based software out there, but it
would be foolish to begin a new programming project in
FOR1RAN.

You're right in saying that Logo enthusiasts shouldn't
want programming language development to be frozen at the
level of 1980 Logo. But neither should we make the opposite
mistake and declare all languages equal, forgetting the ideas
that made Logo such a good idea back then. I think the most
important of those ideas was the use of procedures as the
central control mechanism. Under the name "functional
programming" the same general idea is an important part of
the methodology of parallel computation. It dido' t begin with
Logo; Lisp and APL were there first Most modem languages,
including Pascal and C, permit this functional programming
style, even though other styles are more popular in those
languages. The versions of BASIC available to most personal
computer users, however, do not allow the use of procedures
at all. More advanced versions of BASIC do include proce
dures; we can take this as a victory for Logo's approach to
programming, while remembering that most BASIC pro
gramming (especially in schools) is still done in the bad old
versions.

Even BASIC was used for a good reason in its historical
context. The reason was that the first personal computers had
very limited memories; 8000 bytes was considered enormous.
It happens that BASIC is an easy language to implement, and
aBASICinterpretercouldbewrittenthatwouldfitinthesmall
machines. In those days, it was BASIC or nothing. BASIC
made the personal computer revolution possible. We can
respect it for that, just as we should respect the historical
importance ofFOR1RAN.

In the present, though, we have plenty of memory in our
computers. For us as educators, the central point isn't what
language we use, but what ideas we teach. I think we should

teach functional programming. This can be done in Logo, or
Pascal, or Scheme, or C, or some advanced versions of
BASIC. It can't be done in the versions of BASIC commonly
used in schools. A school that uses those primitive forms of
BASIC is locked out of teaching some great ideas. I don't
think I'm being mindlessly chauvinistic when I deplore that
restriction.

(I'm aware that I haven't explained what functional
programming is all about, or why it's a good thing. That's a
long discussion in itself, and I've made the argument else
where. For now ,just substitute your own favorite Logo idea.
If you don't have any Logo ideas that can't be done in some
other language, then indeed you might as well use another
language!)

The editorial is right that we run the risk of sounding silly
if we make the choice of programming language a litmus test
for political correctness in educational computing. Ideas are
central, not languages. Still, languages embody ideas! If we
go to the opposite extreme and accept all languages uncriti
cally, we'll end up by teaching the least common denomina
tor, the ideas that are so old-fashioned that every language can
handle them.

(A specific case about which I'm particularly upset is the
Advanced Placement curriculum in Computer Science. To
object that the test is given in Pascal seems silly. But it's not
silly to notice that the ideas in the test include things like strong
variable typing and don't include things like list processing.
Crucial ideas like recursion that are possible but downplayed
in Pascal programming are, therefore, present but
downplayed in the AP curriculum. Pascal isn't a bad language
in any absolute sense, but the AP curriculum is a bad curricu
lum, and it's bad because of its historical ties to the style of
programming that goes along with Pascal.)

P.S. Do people really object to the new features in
LogoWriter and Logo PLUS? I've always liked the new
features, especially the page metaphor instead of workspace
fl.les. What I don't like is the elimination of old features,
specifically CATCH, THROW, DEFINE, TEXT, and prop
erty lists. (I'm comparing LogoWriter with earlier LCSI
versions; I'm not as familiar with the Terrapin story.) These
missing features are compatible with LogoWriter's new
ideas; they were left out just to make more room on tiny
Apples. Now that we have new versions for larger machines,
let's get those features back in! Then I'll be happy to use
Logo Writer.

Brian Harvey, Computer Science Division
University of California, Berkeley

May 1990 -----LOGO EXCHANGE ----41111-~· Page23

Turtle Graphics for HyperCard
by Glen L. Bull and Gina L. Bull

In last month's column we described how to build a turtle
in HyperCard and provided procedures for FORWARD,
BACK, LEFf, and RIGHT. These commands can be used to
move the turtle around the HyperCard screen in traditional
Logo fashion, but PENUP and PENOOWN commands must
be added to allow the turtle to draw. In this column, the last
of the year, we will provide turtle graphics for the turtle
created last month.

Adding Pen Commands
PENUP and PENDOWN commands provide a way to

control the turtle • s pen. A global variable called penS tate is
used to record the state of the pen. When the penState is
"down, "theturtlewilldraw. WhenthepenStateis"up",the
turtle will move across the screen without drawing. Add the
following procedures to the turtle commands already entered
in the script of the Stack Editor last month.

on PENUP
global penState
put "up" into penState

end PENUP

on PENDOWN
global penState
put "down" into penstate

end PENDOWN

Because these commands are frequently used, we will create
abbreviations for them. You may want to use the same
approach to create abbreviations of FD for FORWARD and
BKforBACK.

on PU
PENUP

end PU

on PD
PENDOWN

end PD

In last month's column we demonstrated how the turtle
heading can be initialized when the stack is first opened. The
penState should also be added to this initialization procedure.
We have chosen to place the pen in the "up" position when the
turtle first appears, but you can follow your own preference.
Please note that, as always, the "-r symbol indicates that a line
is continued in HyperCard and is obtained by holding down
the option key as the Return key is pressed.

on openStack
global heading,penstate
put 0 into heading
put "up" into penState
set icon of card button ~

turtle to "T" & heading
end openStack

Drawing a Line
Drawing in HyperCard is accomplished by dragging the

paint brush from one set of Cartesian coordinates to another
set of coordinates. First choose the paint brush by typing the
following in the Message Box, and pressing the return key:

choose brush tool

This command should result in selection of the
paint brush in the tools palette. f!"1
After the brush tool is selected, draw a line by l...f2J
entering the following in the Message Box of
HyperCard:

drag from 50,50 to 100,200

This command will draw a line across the HyperCard screen
between the two coordinates specified. The drag command
will be used to create a drawLine procedure which can be
usedtodrawalinefromonepositiontoanotherifthepenState
is ••down".

on drawLine
global penstate,pos,newPos
if penstate is down then
if the tool is not "brush tool" ~

then choose brush tool
drag from pas to newPos

end if
end drawLine

In this instance, we would like to draw aline from the old turtle
position to the new turtle position. This can be accomplished
by adding the draw Line procedure to the end of the script for
FORWARD that was developed last month.

j -

Page24 -----LoGO EXCHANGE ----Gil!-~· May 1990

on FORWARD length
global heading,pos,newPos
put the lee of card button ~

turtle into pes
put item 1 of pes + length * ~

cos ((90- heading) *PI I 180)~
into x

put item 2 of pes - length * ~
sin ((90 -heading) *PI I~

180) into y
put round (x) & "," & round (y) ~

into newPos
set the lee of card button ~

turtle to newPos
drawLine

end FORWARD

To use new drawing capabilities of the turtle, fJrSt put the pen
down by entering the following in the Message Box and then
pressing return:

PEND OWN

Then type the following:

FORWARD 100

Did the turtle draw a line 100 turtle steps long?

Emulating the Repeat Command
In Logo it is possible to enter more than one command on

the same line. In HyperCard this will generate an error
message. For example, try typing something like ''FOR
WARD 50 RIGHf 90" on the same line in the Message Box.
The chances are that some computer jargon like "Comma Ex
pected Between Arguments" will be generated when you
press Return.

At times it may be convenient to enter more than one
command at a time in the Message Box. Logo has a RUN

command, not often used. which allows the user to run a list
of commands. The command looks like this in Logo:

RUN [FORWARD 50 RIGHT 90]

Actually "RUN" is the same as "REPEAT 1" in Logo,
because the two commands have the same effect.

REPEAT 1 [FORWARD 50 RIGHT 90]

Creating a RUN commandinHyperCardwill allow us to enter
more than one command at a time in the Message Box. The
syntax for the HyperCard version of RUN will be slightly
different than the Logo version. The list of commands are
enclosed in quotation marks rather than Logo brackets, and it
will be necessary to place a comma between each command.
The HyperCard version looks like this:

RUN "FORWARD 50, RIGHT 90"

The REPEAT command is used more often than RUN in
Logo. The word "REPEAT' is already used for another
purpose in theHyperTalkscripting language, so REPEAT can
not be used on the command line in the same way that it is in
Logo. However, the RUN procedure that we are about to
create can be made to serve double duty by adding a provision
for specification of the number of times the commands will be
run. The form of the command might look like this:

RUN 4, "FORWARD 50, RIGHT 90"

There must be a comma between the number and the list of
commands. In Logo, inputs to procedures are separated by
spaces, but in HyperCard they are separated by commas. In
this instance there are two inputs: (1) the number of times the
commands should be run, and (2) the list of of commands to
be run. If the number of times to run the list of commands is
omitted, it is assumed that the default should be one time. The
proceduretocreateaRUNcommandinHyperCardlookslike
this:

on RUN times,command
if command is empty then

put times into command
put 1 into times

end if
put number of items in command
into max
repeat times

repeat with n = 1 to max
send item n of command

end repeat
end repeat

end RUN

I
I
I

May 1990 -----LoGo ExcHANGE---~~ Page25

After you have entered the script for RUN into the Stack editor
of HyperCard, try typing the following in the Message Box:

RUN 4, "FORWARD 50, RIGHT 90"

HyperCard should produce the familiar Logo square.

0
There is one signifiCant limitation to the HyperCard version
of RUN. Since it uses commas as the delimiters that tell it
where one command ends and the next one begins, commands
with two inputs such as ''RECTANGLE 51,40" cannot be
included in the list of commands to be run.

Drawing Embellishments
There are several commands that make turtle graphics

more useful. One of the more important is the CLEAR
command, which clears the graphics screen. The CLEAR
command can be written in the following way in HyperCard.

on CLEAR
put the tool into oldTool
choose select tool
doMenu "Select All"
doMenu "Clear Picture"
choose oldTool

end CLEAR

Some features can be included in the HyperCard version of
turtle graphics that may not be available in some other ver
sions of Logo. For example, it is possible to set the pen width
to any of six different sizes.

I I I I I I
2 3 4 5 6

This is a procedure that will alter the size of the line drawn by
the HyperCard turtle.

on penWidth size
if size < 2 then set brush to 28
if size 2 then set brush to 32
if size 3 then set brush to 8
if size 4 then set brush to 7
if size 5 then set brush to 6
if size > 5 then set brush to 5
set lineSize to size

end penWidth

The current version of HyperCard does not support color, but
several different shades of gray can be used for the pen color.

2 3 4 5 6

Whenthepenshadeissetto"white,"itwilleraseanylinesthat
are drawn in black.

PENSHADE "white"

The commands "PENSHADE white" and "PENSHADE 1"
have the same effect in this instance. The script for the
PEN SHADE command can be written in this way.

on penShade color
if color "white" then set pattern
to 1
if
if
if
if
if
if
if

color <
color
color
color
color
color >

2
2
3
4
5
5

then
then
then
then
then
then

set pattern to 1
set pattern to 2
set pattern to 3
set pattern to 13
set pattern to 22
set pattern to 12

color "black" then set ~
pattern to 12

if color = "brick" then set ~
pattern to 36

if color = "plaid" then set ~
pattern to 40

if color = "grid" then set pattern ~
to 34

end penShade

li

L---~~---· ___::.J

-

Page26 ------L 0 G 0 EXCHANGE -----aD->•· May 1990

In addition to shades of gray, different patterns such as brick
and plaid can also be selected through the penShade com
mand.

brick plaid grid

The pen shade not only affects the pattern of the line that the
turtle draws; it also affects the pattern used by the Fll.L
command. The Fll.L command is written in the following
way:

on FILL
put the tool into oldTool
choose bucket tool
click at the loc of card button
turtle
choose oldTool

end FILL

After you enter the Fill. procedure into the script of the Stack
editor, try the following. First, draw a square using the turtle
graphics commands that you have added to HyperCard. Pick
the pen up and put the turtle in the center of the square. Then
set the pen shade to the brick pattern by typing the following
in the Message Box and press return:

go iiimmmmgggiimimmmiiiil!lmmimmmmiimmmmmmiiiii

penS hade "brick"

After you have set the pen shade to the brick pattern, type
"Fill." in the Message Box and press return. r D !i!l!i§!!5!0!!!§!!iii!i5!li!i!iii!!;;;;ia!!!ffi!O!!!!!!!iii!!iii"!l

--~~'=--·-·-·-··-·---··-·-·--·--·

The square should be filled with a brick pattern. Don't forget
to set the pen shade back to black (unless you want the turtle
to draw in a brick pattern).

•
The PENS HADE script is based on the menu of patterns in
HyperCard, so if you want, you can experiment by adding
your own favorite patterns to the PENSHADE command.

Creating Procedures with Your Turtle Graphics
Procedures are the heart of Logo, and of HyperCard as

well. They make it possible to break larger problems into
"mind-sized" chunks. Now that you have added the turtle
graphics commands to the script of the Stack editor, you are
ready to begin using them to write procedures. You don't
want your students to intermingle their procedures with the
basic procedures that provide the new turtle graphics capabil
ity. Fortunately, each card in HyperCard also has a script
editor.

The basic structure of Logo Writer is composed of pages.
Each page in LogoWriter has a procedure editor in which
procedures for that page can be edited. In the same way, each
card in HyperCard also has an editor. If you place the turtle
graphics procedures you write on the Card editor, they will not
become intermingled with the basic turtle graphics commands
that you placed in the Stack editor.

ToaccesstheCardeditor,gototheObjectsmenu,butthistime
select the "Card Info" option rather than "Stack Info" as you
have previously. (Note: to highlight the critical features, we
have edited some of the menus so that only the most salient
aspects are shown.)

Obje(:ts

Hu11on lnfo.u
rh~Hi J n to ...
Card Info ...
Bkgnd Info .. .
Stack Info .. .

May 1990 -----LOGO EXCHANGE---~~ Page27

Once you are in the "Card Info" dialog box, select the "Script"
button, which will take you to the script editor for the card.
When you are in the script editor for the card, enter the
following procedure, which will be familiar to most Logo
users.

on square size
repeat 4

fd size
rt 90

end repeat
end square

There are a couple of differences between the HyperCard
version of SQUARE and the Logo version. In a HyperCard
script, the commands to be repeated must be placed between
a ''REPEAT'' statement on the first line and an ''END RE
PEAT'' statement on the last line. Further, only one command
is permitted on each line.

Once these minor differences are noted, the overall for
mat will seem very familiar to most Logo users. You will be
able to run your favorite twtle graphics procedures just as you
can in Logo. For example, here is a procedureforspinSquare.

on spinSquare
repeat 36

square 50
right 10

end repeat
end spinSquare

After you enter this procedure in the Card editor, you will
obtain the following result when you type "spinSquare" in
the HyperCard Message Box:

Summary
In the previous three months, we showed you how to do the
following:

• Create a HyperCard stack
• Write HyperTalk procedures
• Build a Logo turtle in HyperCard
• Create FORWARD, BACK, LEFT, and RIGHT com

mands

In this column we added turtle graphics to the basic turtle.

We have written a column for the Logo Exchange each
issue since the founding of the jomnal, for a total of 71
columns over eight years. (The total would have been 72
columns, but we skipped one month when our son, Stephen,
was born.) There have been a number of amazing changes in
technology over the past decade. The first issues of Logo
Exchange were hammered out on a dot matrix printer in Tom
Lough's basement. Now they are generated on PostScript
laser printers.

In a recent editorial, Sharon Yoder, the current Logo
Exchange editor, noted the trend toward use of Logo as an
application rather than as a programming language. She
asked,

"Should we be disturbed that many people are treat
ing Logo as an application? Does it affect the
fundamental philosophy behind Logo and Logo-like
learning? I think not"

We agree. When microcomputers were first introduced to the
schools, Logo was one of the few interesting applications
available. Now there are a multitude of interesting applica
tions, which range from hypertext and hypermedia to projects
such as the National Geographic Kid's Network and MIX.
The International Society for Technology in Education (it
seems strange to no longer call it the "International Council
for Computers in Education") not only has SIGLogo, but
SIGHyper, SIGTelecommunications, and many others as
well.

In the 1960s some thought that the most effective use of
computers would be found in their role as teaching machines
through Computer Assisted Instruction (CAl). In the 1990's
it is clear that their role as a teaching tool is one of the most
powerful instructional uses. SIGLogo, SIGTel, and SIGHy
per are all part of a larger interest group of special interest,
SIGTools. When a student in Charlottesville, Virginia uses a
modem to send a Logo procedure to a class in Alaska or

Page28 -----LoGo ExcHANGE----o~~D~-s•· May 1990

Moscow, is Logo or telecommunications the most important
element? Thequestionis meaningless, because the tool-using
attitude is the foundation that underlies the most important
lesson that they are learning. Logo was the early forerunner
of the tool-using concept, but it has now been joined by many
other applications, with more arriving every year.

Possibly a title such as Technology and Teaching Tools
rather than Logo Exchange would be more reflective of the
broad array of applications that will become available in the
coming decade. In any event, we will continue to discuss links
between Logo and Logo-like tools in the next year through the
vehicle of "Logo and Company." Have a good summer!

ef•fec•tive\i-'fek-tiv\adj (14c)

1 a : producing a decided, decisive, or
desired effect b : IMPRESSIVE,
STRIKING

2 : ready for service or action

C omputer-1 ntegrated Instruction:
Effective Inservice

Dave Moursund's comprehensive series on inservice
training for computer using educators has grown.
Effective lnservice for Secondary School Mathematics
Teachers and Elementary School Teachers are joined
by texts for Secondary School Science Teachers and
Secondary School Social Studies Teachers.

Based on a National Science Foundation project,
these volumes bring you the latest research on effective

Glen Bull is a member of the instructional technol
ogy faculty in the Curry School of Education at the
University of Virginia. Gina Bull is a programmer
analyst for the University ofVirginiaDepartment of
Computer Science. By day she works in a Unix
environment; by night, in a Logo environment.

Glen and Gina Bull
Curry School of Education

Ruffner Hall
University of Virginia

Charlottesville, VA 22903

BITNET addresses:
Glen: GBULI.@ VIRGINIA.bitnet

Gina: GINA@VIRGINIAbitnet

training. Each work contains specific activities and
background readings that enable you to hold inservices
that result in positive, durable change at the classroom
level.

If you design or run computer-oriented inservices,
Effective lnservice for Integrating Computer-As-Tool
into the Curriculum will help you develop a sound
program through theory and practice. Sample forms
for needs assessment and formative and summative
evaluations are included.

Each of the five volumes comes in a three ring binder
that includes both hard copy and a Macintosh disk of
the printed materials. Individual Math, Science, Social
Studies, and Elementary School volumes are $40 each
(i$3.95 shipping !Per copy). Computer-As-Tool is $25
($3.95 shipping per copy). The complete set of five is
available for the discounted price of $150 ($7 .50
shipping per set).

ISTE, University of Oregon, 1787 Agate St.,
Eugene, OR 97403-9905; ph.503/346-4414.

May1990 -----LOGO EXCHANGE -----aDJ.-~ Page29

Programming with Style
by Douglas H. Clements

In the previous column we saw that successful high
school teachers explicitly encouraged their students to master
each "link in the chain," from learning language features to
learning to design programs to solving problems. Even this
may not be sufficient, however, especially in helping swdents
become "expert" programmers.

Programming style: A way of thinking
How does one impart to students beneficial ways of

thinking about code that will allow them to write truly good
programs(Joni&Soloway, 1986)? Thatis,progmmsthatare:

• correct,
• user-friendly,
• concise, efficient,
• debuggable, extensible, and maintainable.

Which of these goals should we emphasize? How should
we achieve them? A common way is to emphasize efficiency.
However, Joni and Soloway point out real problems with this
criterion. First, "efficiency" is rarely meaningful in the
context of the relatively small programs students write. Sec
ond, efficiency is not really understood until late in the
development of programming ability. Third, the message we
are sending is "efficient programs are best" But even in
sophisticated progmms, efficiency must be balanced with
other characteristics, such as being debuggable.

Therefore, J oni and Soloway take as their criterion the
development of readable programs. Over 90% of computer
programs they examined-and these were written by college
students-violated the principles of readability. So there is a
deficit More important, focus on readability helps develop
good programming practices and is a familiar activity to
students.

Program readability
How does one define readability? The authors' answer is

based on theory and on research with both novice and expert
programmers. Experts have two types of knowledge of
programming: Progmmming plans, which we called "tem
plates" previously, and rules of programming discourse.
These rules specify the conventions in programming, for
example, meaningful names for variables. They set up expec
tation in the minds of the programmers about what the pro
gram does. So they are analogous to discourse rules in
everyday conversation.

Joni and Soloway's research indicates that experts' pro
grams are built of templates modified to meet the needs of a
particular problem. The modification and combination of
these templates are guided by the rules of progmmming dis
course. Programmers find it significantly more difficult to
comprehend progmms in which these rules are not followed.
For example, in a program that fmds the minimum number
among its inputs, changing only the name of the variable, and
storing the largest value from MIN to MAX results in a 100%
increase in reading time.

So, programmers expect other programmers to follow the
rules. Readable programs have clear and evident plan struc
tures and present no surprises. Joni and Soloway examined
the programs of 57 college students. These sbldents wrote a
progmm to solve a tax problem. From this, they formulated a
basic list of rules of two types. Maxims are generalized
statements of good programming style. Rules of program
ming discourse are specific statements regarding each maxim.
WbileJoni and Soloway's swdents used Pascal, research with
Logo indicates thatthesameor similar rules apply using Logo
(Lee & Lehrer, 1988).

Information roles and variables
A basic programming process is to choose and name

variables. This leads to:

Maxim 1: Think carefully about the roles informa
tion will play. Use one and only one variable for each
role. Give the variable a name that reflects this
information role.

One way students violated this rule solving the tax
problem was to have one variable (STA1US) hold informa
tion both about marital status and about whether to end the
progmm or to continue. This lead to:

Discourse rule: Avoid Double-Duty Variables. Do
not have one of your variables serving two different
information roles. Instead, use two separate vari
ables, and iiame the variables in a way that makes
t001r roles clear (p. 107).

Other students had several variables at different points in
the program that held the same information. That is, both
variables played the same information role. So:

Discourse rule: Avoid Half-Duty Variables. Do not
have more than one variable for any information role
in each program module. Use one variable, and have
its name reflect its information role (p. 110).

Page30 ------LOGO EXCHANGE-----.. May 1990

Good construction
Other programs are poorly constructed. Students vio

lated:

Maxim2:
1. "Be sure that all portions of your code are useful
to the task at hand.
2. Choose language constructs that help to make
your program actions clear" (p. 110).

An analogy is that in writing travel directions, one would
want (1) all instructions to be useful in getting the person to the
goal, (2) expressed in such a way that the actions they had to
take were clear. Program readers look at code and first ask,
why is this here? What purpose does it serve? Certain kinds
of code violates readers' expectations.

A common error is initializing a variable more than once.
Often students initialize a variable by directly assigning it a
value such as 0 and then re-initialize it through a different
means. Forexample, thesecondassignmentmightresultfrom
some computation or through input from the user. Some
students set the variable SALARY to 0, then asked the user to
type the salary, re-initializing SALARY with that value. The
ftrst initialization leads a reader to expect that SALARY
might be an accumulation variable, but it is not. When the
reader sees SALARY re-initialized, an expectation failure
occurs, and rereading is often necessary. So:

Discourse rule: Initialize each variable precisely
once.

There were several instances of choosing language con
structs that obstructed readability. Some of these instances
were more specific to the Pascal programming language. One
generally applicable rule was placing code that was not af
fected by an IF test in both the TRUE and FALSE branches.
One student's work, translated to Logo, was:

IF :salary < 10000 THEN MAKE "tax
:salary * :ratel MAKE "net :salary
- :tax ELSE MAKE "tax :salary *
:rate2 MAKE "net :salary - :tax

Note that the command MAKE "net :salary - :tax is
repeated, even though it is invariant with respect to the IF
instruction. This leads to a:

Discourse rule: DO NOT put code that is invariant
with respect to the outcome of a conditional IF text
inside the scope of the IF construct. Instead, put this

code immediately preceding or following the IF
construct (p. 120).

Merged goals
Finally, students sometimes wrote segments of programs

that achieved more than one goal. In contrast, the authors
suggest:

Maxim 3: Minimize having merged goals in your
program. Try to use a separate plan to realize each
program goal (p. 120).

Some students, for example, combined three goals of the
tax problem: (a) getting and validating data from the user, (b)
calculating, and (c) printing the results. This led to extensive
reader confusion. This could have been avoided by:

Discourse rule: Don't merge validation of input
with any other program goal.

In sum, emphasizing the readability of programs is
meaningful and accessible to students. Teachers might make
maxims and discourse rules explicit through discussions.
Students should revise programs for readability, not just edit
them so they "work." Such activities will probably lead to
more readable programs. More important, they help students
develop deeper knowledge of programming. The specific
rules used are not as important as the approach: Discussing
and developing programming style and understanding.

References
Joni, S. A., & Soloway, E. (1986). But my program runs!

Discourse rules for novice programmers. Journal of
Educational Computing Research, 2, 95-125.

Lee, 0., & Lehrer, R. (1988). Conjectures concerning the
origins of misconceptions in Logo. Journal of Educa
tional Computing Research, 4, 87-105.

Douglas H. Clements
State University of New York at Buffalo
Department of Learning and Instruction

593 Baldy Hall
Buffalo, NY 14260.

CIS: 76136,2027 BITNET: INSDHC@UBVMS

Mayl990 -----LOGO EXCHANGE----~ Page 31

Edited by Dennis Harper
University of the Virgin Islands
St. Thomas, USVI 00802

Logo Exchange Continental Editors
Africa Asia Australia Europe
Fatimata Seye Sylla Marie Tada
UNESCO/BREDA SL Mary's Int School
BP 3311, Dakar 6-19, Seta 1-chome

Jeff Richardson
SchoolofEducation
GIAE

Harry Pinxteren
Logo Centrum Nederland
P.O. Box 1408

Latin America
Jose Valente
NIED
UN! CAMP
13082 Campinas
Sao Paulo, Brazil

Senegal, West Africa Setagaya-ku
Tokyo 158, Japan

Switchback Road
Churchill 3842
Australia

BK Nijmegen 6501
Netherlands

This month's Global Comments come to us from our
Latin American and Asian correspondents. Marie Tadagives
us a recent overview on the use of Logo in Japan while Jose
Valente highlights some Logo activities in Uruguay and
Brazil.

Japan
by Marie Tada

For me, trips to the States in the summer include comses
or conferences that help me develop my Logo learning and
contacts with Logo enteiprises such as LCSI, Terrapin, an
dLego TC Logo to see what new ideas and products are avail
able. The rest of the year I rely on the Logo Exchange! I have
wondered, however, about the kind of support that Logo users
in Japan could fmd, and have been delighted to see that a
number of sources are available. In this article I will talk about
Logo Japan and its efforts to promote Logo learning in the
Japanese schools.

Three years ago I made my fmtcontacts with Logo Japan
in order to get a site license for Logo Writer. At that time the
Tokyo office was fairly small, and I have been amazed to see
the growth that has taken place in the past couple of years and
the inroads that the Japanese version of Logo Writer has been
making in Japan in the process.

Logo Japan is a private company that has been working
in conjunction with LCSI since 1987. Seymour PapertofMIT
is a scientific advisor and comes to Japan regularly to promote
Logo and exchange ideas.

Mr. Tsuru, the president of Logo Japan, sees that the
schools of the coming decades will witness widespread
growth in the use of computers in education. As the Education
Ministry of Japan is revising guidelines to include computers
as a central part of the educational experience of children, Mr.
Tsuru predicts that Logo Japan will play a large role in

determining how and what will be learned. Logo Japan has
taken the Logo languageandLogoWriter toJapanand worked
on development of materials and support for users of the
Japanese version. Now that Logo Writer is being used more
extensively in Japanese schools, it is Logo Japan's goal to
work on development of the software's capacity and promote
exchange of data and standardization of software to facilitate
file transfers among schools.

The philosophy of Logo Japan is to use the resources of
the technological age to foster a creative learning environ
ment The Japanese version of Logo Writer is intended to be
a kernel from which the new technology of the age can be
developed while children engage in educationally sound
learning projects. Logo Japan is in the process of developing
quality educational materials and reference manuals, and is
also facilitating the development of leaders who will help in
introducing Logo Writer to teachers in the schools.

Logo Japan recently came to our computer club meeting
to write up our activities in their Logo World publication. We
received many issues of this Japanese language Logo journal
and I was delighted with its high level of articles and activities.
The magazine attempts to provide helpful information, pro
grams, information about computer education, overseas
news, and reader exchanges. We have explored some fractal
activities that were suggested with successful results. At the
end of our meeting I felt that this must surely be what Dr.
Papert had in mind when he stated that Logo was a vehicle for
"playing" with mathematics as well as a medium for sharing
our thinking on a world-wide scale.

Aside from this journal, there is also a telecommunica
tions exchange called Logo-Net At present the network is
used primarily by teachers and other enthusiasts to exchange
problems, information, and suggestions. It is hoped that this
network will will become an "electronic conference room" of
Logo exchanges among the schools in the near future. The

Page 32 -----L 0 G 0 EXCHANGE -----aD-~· May 1990

host computer is in Tokyo with 64 access points throughout
Japan.

LogoJapanhasprovidedmewithalistofuniversitiesand
other educational institutes that have purchased Logo Writer.
The list is long and impressive, suggesting that the level of
interest in Logo as a part of the educational scene is definitely
on the rise. I have had the opportunity to see Logo Writer in
action in the Japanese schools and will write more on this in
future Global News columns.

Uruguay
from Jose Valente

The Instituto Yavne is dedicated to teaching pre-univer
sity students (16-18 years old) who have an interest in attend
ing engineering schools and students who are going to be math
teachers at secondary and high schools.

The objective of this research is to show that Logo is not
only for kids, but it can be a useful tool to prepare students for
more advanced degrees. Logo is used not only to teach
computer programming, but as a didactic tool to help students
learn how to think. to learn, to solve problems, to debug, and
to train people how to teach.

These students are developing the following activities:

Study of real functions
For a given function, the students can study domain,

limits, derivative, variations, maximum and minimum, inflec
tion points, etc. This study is done through a project the
students develop using Logo. One project, for example, is to
plot the function. In doing this they have to study the
function's behavior, and adjust scales according to the range
of the abscissa, maximum points, and the screen size. Another
project could be to identify problems in real life, describe them
through specific functions, and study them.

Use of geometric transformations
This activity has two parts. First, the student has to apply

several transfonnations on a particular point {x,y) on the
screen. For example, send the turtle to its homotetic point with
respect to the (0,0) coordinate and a given ratio k (that is x' =
kx andy' = ky). The second activity is to defme a procedure
that draws a particular figure and to apply to this figure several
transformations. With this activity the student can try, inves
tigate, and analyze different properties of the figure and of the
transformation.

Discover the number 11:

Using Logo, the students calculate the area of polygons
inscribed in a circumference as function of the circumference
radius and the number of sides of the polygon. If the student
repeats this procedure for different polygons, he or she obtains
pairs of numbers that converge monotonically to 11:, if the
circumference radius is 1. By doing this the students can study
the properties of polygons, trigonometry, convergent series,
limits, etc. Also, they can come to understand much better the
Logo procedure that draws a circumference.

Develop educational software (tutorials)
As a project, the student has to develop a procedure that

can teach a particular subject through the computer. For
example, a 16-year-old developed a program to teach the
Pythagorean Theorem. In order to calculate the angle the
turtle has to tum, the student had to implement the arctangent
function. To do this he used Taylor-MacLaurin series and had
to deal with errors and the calculation of errors.

Exercising problem solving
ThisactivityshowedthatinLogo,physicsandmathemat

ics can help each other in solving problems. One student
implemented a microworld in which one can play and study
the behavior of light according to a law implemented through
a student-defmed procedure. One activity is to measure the
angles of incidence and refraction in several circumstances
until one can discover the law that is guiding the behavior of
lighL

This work has shown that through the use of Logo it is
possible to awaken in the students the adventurous spirit of
investigation while they experience several different learning
situations. The most important thing is that they have to
correct their own mistakes so they can solve their own prob
lems. These activities will, certainly, be very important in
helping them to become professionals of tomorrow.

For more information please contact

Alicia Villar
Avda. Rivera 5760
Montevideo 11400 URUGUAY

Their inquiring minds want to know.

And you'll help them discover how to find the
answers. By using Teaching Thinking Skills
with Databases in your classroom, you'll
challenge students to develop a mind of
their own .

Designed for Grades 4-8 , this step-by-step
guide by Jim Watson gives you the
opportunity to impact your students'
cognitive development through the use of
databases.

Teaching Thinking Skills with Databases contains
14 data files and 46 worksheet and transparency
masters. Teach with databases in any subject
using AppleWorks® or FrEdBase.

Use Teaching Thinking Skills with Databases .. .
because they want to know.

School site license $30.00 +$3.95 shipping

ISTE , University of Oregon, 1787 Agate St. ,
Eugene, OR 97403-9905; ph. 503/346-4414.

Apple Works for Educators by Linda \ '\
Rathje really shines. The new edition '\\\\\\ \ \\ \\
has been expanded to include sect1ons ~

for : ~"'\:- ::::::
• mail merge , ~ ~
• 1ntegrat1on activ1t1es ~ ~ A

• a glossary, and ----~ : BEGINNING

• software applications. ~ $

Each section provides step-by-step --.::: -!-
instructions. Beginning and intermediat, - :
Apple Works ' users learn word process- --= ;
ing, database and spreadsheet manage - :
ment, and printer options. -::::::=- ~

Your copy includes a data disk of ___. _;...
working examples. Add AppleWorks for- :
Educators to your classroom and watch ~ -!-
your students shine. --:/ ::±:

Single copy price: $22.95
please add $3.95 shipping

A % /;:

/

AND ---
INTERMEDIATE

WORKBOOK

/
ISTE, 1787 Agate St., Eugene, OR 97 403; / '-:-:----;--;--;-:---:-:--;---:-:---:-.-,\-,':-:\- \:-:\-:\--:-'\ ~ ""'
ph. 503/346-4414.

. '. ·

Basic one year membership includes
eight issues each of the Update
newsletter and The Computing
Teacher, full voting privileges, and a
10% discount off ISTE books and

$36.00

Professional one year membership
includes eight issues each of
the Update newsletter and The
Computing Teacher, four issues of the
Journal of Research on Computing in
Education, full voting privileges, and
a 10% discount off ISTE books and
courseware. $69.00

The International Society for Technology in Education
touches all corners of the world. As the largest
international non-profit professional organization
serving computer using educators, we are dedicated to
the improvement of education through the use and
integration of technology.

Drawing from the resources of committed professionals worldwide, ISTE
provides information that is always up-to-date, compelling, and relevant to
your educational responsibilities.

Periodicals, books and courseware, Special Interest Groups, Independent Study
courses, professional committees, and the Private Sector Council all strive to
help enhance the quality of information you receive.

Rely on ISTE support:

• The Computing Teacher draws on active and creative K-12 educators to
provide feature articles and carefully selected columns.

• The Update newsletter reaches members with information on the activities
of ISTE and its affiliates.

• The Journal of Research on Computing in Education comes out with articles
on original research project descriptions and evaluations, the state of the
art, and theoretical essays that define and extend the field of educational
computing.

• Books and courseware enhance teaching materials for K-12 and higher
education.

• Professional Committees develop and monitor policy statements on
software use, ethics, preview centers, and legislative action.

• The Private Sector Council promotes cooperation between educational
technology professionals, manufacturers, publishers, and other private
sector organizations.

It's a big world, but with the joint efforts of educators like yourself, ISTE
brings it closer. Be a part of the international sharing of educational ideas and
technology. Join ISTE.

Join today, and discover how ISTE puts you in touch with the world.

ISTE, University of Oregon,
1787 Agate St., Eugene, OR 97403-9905.

ph. 503/346-4414

