
Blocks Programming
Michael Tempel
Logo Foundation
michaelt@media.mit.edu
(A version of this article was published in CSTA Voice, Vol. 9 No. 1, March 2013,
http://csta.acm.org/Communications/sub/CSTAVoice_Files/CSTAVoice_03-13.pdf)

The popularity of Scratch over the past six years has encouraged the widespread use of a
particular style of visual programming known as blocks programming. Programs are created by
snapping together graphical pieces, like putting together a jigsaw puzzle.

The first blocks programming language was Logo Blocks. Developed in 1996 at the MIT Media
Lab, this graphical version of Cricket Logo controlled programmable bricks – small
microcontrollers that were used in robotics projects. Blocks programming is also found in Turtle
Art, PICO Blocks, MIT App Inventor, and StarLogo TNG.

Here is a quick overview of how blocks programing works using Scratch as the example.

Scratch features sprites – screen objects that may be animated and act as characters in a story or
game. For example, we may have a cat sprite and a mouse sprite. This script causes the cat to
move randomly around the screen. It may catch the mouse.

The cat sprite points in a random direction and
moves 100 steps. It repeats this 10 times unless
one of the moves causes it to touch the mouse
sprite. In this case, a talk bubble with the word
“gotcha!” appears for two seconds and the script
stops. If the mouse hasn’t been caught after 10
repeats, the cat sprite says “You win!” and the
script ends.

The blocks provide a visual representation of the
program, which for many people is more
understandable than text. A block’s shape gives
an indication of its purpose. The way in which
the blocks are assembled shows the flow of the
program.

Most blocks have a notch at the top and a tab at the bottom. These “stack blocks” may be put
together, forming a sequence of instructions. The “repeat” block has a “C” shape, with the
sequence of instructions to be repeated fitting into the “C”. The “if” block has a similar shape,
enclosing the instructions to be run if a condition is met.

Some of these blocks, such as the “move” block require inputs. We can click in the number field
and type a number. For the “point in direction” block, rather than use a constant as the input,
we have used a “reporter block” which returns a random number between 1 and 360. This block
has a rounded rectangle shape so as to fit into the number field of the “point in direction” block.

The “if” block needs a Boolean input, which is provided by the “touching?” block. It reports
“true” if the cat touches the mouse and “false” if the two sprites are not touching. The hexagonal
shape of this block allows it to fit properly into the “if” block.

mailto:michaelt@media.mit.edu
http://csta.acm.org/Communications/sub/CSTAVoice_Files/CSTAVoice_03-13.pdf

A beneficial side effect of having the shapes of the blocks be related to their uses is that it is
largely impossible to make syntax errors. If we try to put the “point in direction” block into the
“if” block, it will not go. It’s the wrong shape. Similarly, we cannot put the “touching?” block into
the “point in direction” block. In this way, most syntax errors are precluded.

The blocks are also grouped by color. Blocks that move sprites are blue. Control block like
“repeat” and “if” are yellow, and so on. Categorization by color provides an additional visual clue
to what the various components of a program are doing.

There are limitations to blocks programming. Because of the graphical representation, a large
program takes up a lot of screen real estate and can be hard to follow. But as with text-based
programming languages, one can create procedures (functions) that allow a body of code to be
collected and called by name. In blocks programming, this is done by making a new block1.

Using our previous example, we
can take the code that aims and
moves the cat sprite and use it
as the body of a procedure
named “jump.” The newly
defined “jump” block can take
the place of those two lines of
code. This is a simple example,
but procedures can be complex,
and may include other user-
created blocks as sub-
procedures. The definition of a
block may include the block
being defined so as to create a
recursive procedure.

In recent years there has been increased discussion of the need for computational thinking and
fluency for everyone. At the same time, the number of students majoring in computer science
has been dropping. Because of the ease and comfort in getting started, blocks programming
makes computing accessible to a much wider audience. And some of those students will become
sufficiently engaged with computational ideas to want to pursue computer science careers.

One can go quite far with blocks programming. SNAP, an extended version of Scratch, is being
used to teach computer science at the high school and college level, including some of the pilot
sites for the new AP Computer Science: Principles course.

Computer science majors will of course also learn conventional text-based programming
languages. After an initial experience with computing through blocks programming, the
transition will be smooth.

References
There are many blocks programming environments available. Here is a partial list:

1. Scratch software and resources are available at http://scratch.mit.edu. An additional
web site for educators is ScratchEd at http://scratched.media.mit.edu/

http://scratch.mit.edu/
http://scratched.media.mit.edu/

2. The initial description of Logo Blocks is LogoBlocks: A Graphical Programming
Language for Interacting with the World by Andrew Begel. It may be found at
http://research.microsoft.com/en-us/um/people/abegel/mit/begel-aup.pdf.

 A current version of Logo Blocks that works with the Super Cricket is available at
http://handyboard.com/cricket/software/

3. SNAP, also known as Build Your Own Blocks (BYOB) is an extended version of Scratch:
http://snap.berkeley.edu/

4. PICO Blocks, which works with the PICO Cricket may be downloaded from
http://www.picocricket.com/

5. TurtleArt is a blocks-based art and geometry environment: http://turtleart.org/
6. Scratch for Arduino is an extension of Scratch that interacts with Arduino

microcontrollers: http://seaside.citilab.eu/scratch/arduino
7. StarLogo TNG is a blocks version of Star Logo:

http://education.mit.edu/projects/starlogo-tng
8. MIT App Inventor is used to create apps for Android devices:

http://appinventor.mit.edu/

1 This feature is in Scratch 2.0 and other blocks-programming environments.

http://research.microsoft.com/en-us/um/people/abegel/mit/begel-aup.pdf
http://handyboard.com/cricket/software/
http://snap.berkeley.edu/
http://www.picocricket.com/
http://turtleart.org/
http://seaside.citilab.eu/scratch/arduino
http://education.mit.edu/projects/starlogo-tng
http://appinventor.mit.edu/

