
1

 www.logofoundation.org

The Very Logo Way

By Pavel Boytchev

© 2002 Logo Foundation
You may copy and distribute this document for educational purposes provided that you do not charge for
such copies and that this copyright notice is reproduced in full

1. Introduction

A couple of weeks ago I watched a documentary about several villages in Rhodopa
mountain. What impressed me most was the way peasants spoke. They used very
basic words in simple sentence structures. If I were them I would express the same with
much more words. That documentary made me think about my experience as a
software developer. In the past I used to work with a dozen different programming
languages. Nowadays I'm generally stuck to C, Logo, and Pascal (not in this order).
That documentary plugged a question in my mind.

Today, while I was spring cleaning my mind, I decided to face the question. There is a
saying that a good programmer can use virtually any language. I tend to agree on this,
but the question needs an answer. The question is: "What is the very Logo way? " I
could rephrase it as "Does Logo (as a language!) provide functionality almost
impossible with most other languages? "Note that I talk about Logo as a language, not
as an educational tool. Most of the Logo features like list processing and turtle graphics
can be implemented in other languages relatively easy. There must be something else,
something which an ordinary Logo user will never use just because (s)he never thought
about it.

My intention while writing this article is to introduce you to three interesting problems
and their unusual Logo solutions.

2. The first problem: "A bureaucratic chain"

I'm sure that most of you have experienced the power of bureaucracy. Call it bubbledom
or red tape, it is an invisible but quite tangible force. Imagine you need to be serviced by
the red-tapist named Anthony. He is the perfect bureaucrat. The only thing he knows is
the name of one of his colleagues – Barbara - and he always tells people to go to her
office. When you visit his office, he redirects you to Barbara. But she is as good a
bureaucrat as he is. So, you go to her office and she says you must go to Clark's office.

http://www.logofoundation.org/

2

You go there just to find out that the right office is that of Donna. You can go on this way
all your day (or life). The problem I'm talking about is if you know in advance the clerks
and how they service visitors, then you can figure out whether the saga will end or you
will go from office to office forever.

.

Figure 1 A bureaucracy chain

This is just one of the many possible dressings of the same problem. You might have
encountered it as the whispers-are-going-round problem. Whenever a person hears a
rumour (s)he whispers it to his(her) best friend. Everybody has at most one best friend,
and best friends remain best friends forever. The question in this interpretation is
whether the rumour will vanish at some point or will circulate forever.

Both the bureaucracy and the rumour problems can be formalized to whether a chain of
object is cyclic or not. Let's now try to solve this problem. The input data contains pairs
of names. Each of the pairs defines a single connection in the chain. For example, the
chain of names above can be formalized to the following three pairs:

(Anthony, Barbara)

(Barbara, Clark)

(Clark, Donna)

If I start to solve this problem in C I need to dive in an ocean of pointers. The Logo way
to solve it is to use lists. Logo has a pretty good set of list-management subroutines,
some of which are extremely fast. A typical Logo solution is to start from the first node
and go along the chain. At each step we store the name of the current node in a list. At
some point we will either find a dead end (surprisingly this is the happy end in the case
of bureaucracy problem) or visit a node which we have already visited. The latter is
checked easily as long as we keep track of all visited nodes. This solution is the additive
one.

3

Figure 2 The additive solution is to keep track of all

visited offices. When we visit an already visited office,

then there is a loop in the chain.

Figure 3 The subtractive solution starts with a full list of

offices and every visited one is removed from the list.

There is a subtractive solution too. It starts with a list of all nodes and at each visit the
node is excluded from the list.

Although both these solutions represent the Logo way, they do not show the glitter of
Logo. They are the Logo way, but they are not the very Logo way. I found a dozen
solutions of the problem, but one of them is so different and so crazy that I'm eager to
share it with all of you.

Imagine a man and his father start going from office to office. The man is young and can
pass two offices while his father passes only one. Because the son progresses faster,
sooner or later he will either finish his journey or will catch up with his father. In the first
case he has proved that there is no cycle so he can patiently wait in the lobby for his
father to finish. In the other case the best he can do is to advice his father to give up,
because there is a cycle and they will never finish the saga.

How to implement this in Logo in the very Logo way? How to find a solution which does
not use temporary list(s) that can grow as much as the number of nodes? Is it possible
to construct a solution which represents the reality as closely as possible?

Let's assume that all people involved in the scenario of the problem are named
differently. Each person is represented as a variable. Everyone knows only one thing -
the name of the next person in the chain. We'll store that knowledge as variable's value.
If there is no next person, then the value is "Lobby.

Here is one sample set of data:

make "Anthony "Barbara

make "Barbara "Clark

make "Clark "George

make "Donna "Emily

make "Emily "Frank

make "Frank "Lobby

make "George "Barbara

make "Lobby "Lobby

The commands above describe that Anthony always redirects visitors to Barbara, while
after visiting Frank you will finish your job and will go to the Lobby. Pay attention to the

4

last line where we say that if the someone goes to the lobby (s)he will stay there and
wait.

The next picture visualizes the same set of data. In addition, there are two paths - blue
and green. The first one starts from Anthony and the second from Donna. The first path
contains a loop, as long as George will redirect visitors to Barbara. The second path
ends in the lobby.

Figure 4 The blue path starting from Anthony contains a loop. The green path starting from Donna ends in the

lobby.

This example shows that the existence of a loop depends not only on the internal links,
but also on the starting point.

To complete the data representation, we need to define the father and the son. The
simplest way is to define two variables, called Father and Son. Their values (i.e. the
facts that they know) are the names of the officer where they are at the moment. If the
starting office is Anthony's, then at the beginning both variables will have the value
"Anthony. In a step, Father will be set to "Barbara, and Son - to "Clark.

The task is to build a function called saga_will_end? It takes one argument which is the
name of the first visited officer. The output is either the word "Yes or "No. If the saga is
endless (somewhere in the chain there is a loop) then the output must be "No.
Otherwise it must be "Yes.

We will build the function in three easy steps.

2.1. Step 1 - Building the frame

We want to define a function with one input - the name of the first visited officer. So we
can name this input Father as long as this is the first officer that he will meet. Apparently
the situation is the same with the son. Here is what we have so far. The ellipses show
where we will include more commands at later steps.

5

to saga_will_end? :Father

make "Son :Father

...

end

To those interested in programming methods, this is a pure form of top-to-bottom
approach. We start from the topmost level and smoothly (or not so smoothly) go deeper
into details.

2.2. Step 2 - Visiting offices

The second step is to define how the father and his son visit offices. Whenever the
father moves an office ahead, the son moves twice more. To program this, we add an
endless while cycle. The first two commands in it are to move the father one step and
the son two steps further. Here is the source of the function.

to saga_will_end? :Father

make "Son :Father

while "true

[make "Father :(:Father)

 make "Son :(:(:Son))

 ...

]

end

Do not hurry to blame me. There is no typo in the text above. The defect is in fact an
effect.

Definitely you've seen the strange use of colon :. In Elica Logo the colon character is not
only a part of the syntax structure or a shortcut of thing ". It is a function. It gives the
value of a variable with a given name. The name can be a word (as it is in all other Logo
implementations that I'm aware of) or an expression (as it is shown above). I could give
a piece of advice for people whose favourite Logo does not have this functionality: Do
not give up. You can use THING instead of colon.

Multiple colons in conventional Logo

If you do not want to or cannot use so advanced colon : you might consider using the
good old traditional THING:

THING "Anthony = :Anthony = "Barbara

THING THING "Anthony = :(:Anthony) = "Clark

THING THING THING "Anthony = :(:(:Anthony)) = "George

We still have to make the third step. It will contain checks for two conditions – whether
the chain is cyclic, not cyclic, or is still undetermined.

6

It is easy to figure out that if the son goes in the lobby, then there is no cycle in the
chain. On the other hand if the son enters an office and he finds his father there then
this is a proof for a loop. The two checks are the final step and the function below is the
final one.

to saga_will_end? :Father

make "Son :Father

while "true

[make "Father :(:Father)

 make "Son :(:(:Son))

 if :Son=:Lobby [output "yes]

 if :Son=:Father [output "no]

]

end

We can try it with different initial offices. Depending on the first visited office we will get
different results.

print saga_will_end? "Anthony

print saga_will_end? "Barbara

print saga_will_end? "Donna

For the first two queries we will get no, for the last one - yes. This is the whole solution.
Of course, it is not the shortest, nor it is the fastest. It is just one of the many possible
solutions.

As I wrote earlier, in this article I will discuss two problems and their Logo solutions.
Although the solution of the first problem can be implemented in all Logo
implementations, the second problem will be a problem to most of them.

7

3. The second problem: Artificial "Artificial Intelligence"

Before getting into the problem, have a
look at the dialogue in the right-hand part
of the page. You may get the feeling that
the answering part understands what it is
told and replies appropriately.

This is a typical problem of the Artificial
Intelligence. I'm pretty sure that if you have
an hour or two free time you could make a
Logo program that accepts statements like
john is smart and answers to what and
who questions. Of course, if you have
Prolog in your hand, you can solve the
problem in a blink of an eye.

Well, most likely your Logo program will
follow the Logo way. Your program
accepts user's input, analyzes it and prints
back the result. This is the so called
inputand- calculate method.

But the very Logo way is somewhat
different - it is based on the
understandand- reply method. From the
dialog exclude all answers. What is left is a
set of sentences and questions that are
the Logo program itself.

Yes, I'm not kidding. It is possible to write
in Logo a small library which allows the
user to write simple programs in almost
natural language. The dialog shown here
is not imaginary. It is the output of a Logo
program which I wrote some time ago.

Figure 5 A simple dialogue between a

human and a computer. Human's words are

in handwrite-style font. Computer's

response is framed in square brackets.

The idea about such use of Logo originated when I made the Elica North Pole Project,
where the user can write programs using commands like start from A , wait for 6 hours,
land in B , etc. Having this idea in mind it was just a matter of time to write a few natural
language commands. Let me try and explain you how I did it. There are several
important things. The first one is that most of the words are in fact names of functions.
For example, mike is a function which always outputs the word "mike. Here is the
definition:

to mike

output "mike

end

8

In a similar way most of the other words are functions too. However there is no need to
define all functions explicitly. We can use a single function which defines all other
functions.

to words :x

while :x<>[]

[make first :x se [[:x]] se [output "] first :x

make "x bf :x

]

end

words [who what mike john peter tall old smart]

One of the possible realizations of such a function is shown above. It accepts as an
input a list of names. Then it creates function s corresponding to these names. All
created functions return as results their names. Although this technique is not quite
efficient, it allows us to write:

mike is tall

instead of:

"mike is "tall

Anyway, both expressions are equivalent. This is the first important idea.

The next one is to find what to do with the word is. Elica is quite flexible and you can
define operators directly and entirely in Logo. Thus, defining is as operator is one of the
many possible solutions. To define an operator you do not need to learn anything new.
Remember, you are now on the very Logo way and there are no obstacles ahead of
you. All the things you do must and will remain Logo-like all the time. So, to define an
operator called is you just write:

to :x is :y

...

end

Pay attention on the heading of the definition. It is a to…end definition except that one
of the parameters is before the name is. This informs Elica translator that this is a
definition of an operator which expects one left argument and one right.

The body of the operator processes the three different sentence patterns:

1. what is <someone>

2. who is <somewhat>

3. <someone> is <somewhat>

We will look at the cases one by one. Let's start from the last one. If is is used as a
statement, then we have to update our 'knowledge base'. We can do this in numerous
ways. The one which I prefer is to create variables for each piece of knowledge. If we
process a statement like mike is tall, then we create the variables mike.iswhat.tall and
tall.iswho.mike.

9

When we have a question like who is tall all we need is to scan for all variables which
names start with tall.iswho.. If two persons are tall, then there will be two variables that
start with tall.iswho.. When we have a what question we find an answer in a similar way.
Consider what is mike. To answer it we look for variables starting with mike.iswhat. .

The realization of the operator is is much easier to implement in Elica Logo rather than
in any other Logo. Here is the full definition:

to :x is :y

if :x="what

[print (se :y "is sent names :(word :y ".iswhat))]

[if :x="who

 [if (count names :(word :y ".iswho))<2

 [make "i "is]

 [make "i "are]

print (se sent names :(word :y ".iswho) :i :y)

]

[make (word :x ".iswhat. :y) []

 make (word :y ".iswho. :x) []

]

]

end

make "is.onpriority 10

10

Figure 6 Variable hierarchy

There is an interesting question. Why we use names like
mike.iswhat.tall, rather than mike_iswhat_tall, or mike\ iswhat\
tall? The answer is that if we use dots to separate subwords in a
word then Elica will structure these names in a way which is
very efficient in terms of memory storage and access time.

Consider the statements in Figure 5. As a result of executing
operator is, the following variables will be defined (in order of
creation):

make.iswhat.tall

tall.iswho.mike

john.iswhat.tall

tall.iswho.john

peter.iswhat.old

old.iswho.peter

john.iswhat.old

old.iswho.john

john.iswhat.smart

smart.iswho.john

mike.iswhat.old

old.iswho.mike

The image on the left is a snapshot of Elica screen. The window
"Variables" displays hierarchically all the variables in the
memory. When a name of a variable contains a dot, that dot
splits the name.

Thus the name mike.iswhat.tall is split into three subwords: mike, iswhat and tall. When
the heading subwords of several names are the same, then these subwords are
merged. You can see in the bottom of Figure 6 than mike.iswhat.tall is merged with
mike.iswhat.old. The first two subwords of both names are shared between them.

What is the easiest way to find all variables with the same header? Of course you can
get a list of all names and check each of the names. In Elica there is a function which
does this for you. Its name is names. Note that the argument of this function is not a
word, but a variable.

Elica allows you to use the value of variable giving its partial name. Thus the value of
:mike.iswhat is a set of two variables. Their names are old and tall. The function names
expects as an input a variable whose value is a set of variables. The result of executing
names :mike.iswhat is the list [old tall].

In the source of operator is, partial names are built on-the-fly. Accessing their values
can be done with the functional : .

11

Using names is not sufficient. We need to format its output and to make it more natural.
We can do this with the help of another function, called sent. The function must convert
a list of words into a natural language phrase.

print sent [mike] -> mike

print sent [mike john] -> mike and john

print sent [mike john ken] -> mike, john and peter

Needless to say, there is no any problem to realize this function. Without being very
picky, I would suggest the following quick'n'dirty implementation:

to sent :x

 if 1>=(count :x) [output :x]

 make local "y "''

 while 2<(count :x)

 [make "y (word :y first :x "', ')

 make "x bf :x

]

 make "y (word :y first :x "' and ' first bf :x)

 output :y

end

These definitions (word, is, and sent) are enough to build our example of artificial AI.
Why I call it artificial? That's because the example is very simple and does not reveal
the complexity of AI problems.

As I wrote earlier, the solutions of the two problems in the article are not intended to be
the fastest, the simplest or the shortest. And definitely, they are not the only possible
solutions.

Some programmers argue that using unique features of a programming language is a
bad habit. They say this is against portability. As long as the goal of computer science is
multidimensional, these programmers are right in respect to one particular projection.

My personal and thus subjective opinion is that using the power of a language is very
beneficial. If we don't use the Logoish features of Logo, then it might be better to switch
to another programming language. Of course, the other case is as bad as this one.
Using the extreme tricks of a language could make a program hard to read and
understand.

4. The third problem: "Selfregenerator"

Some 20 years ago I took part in a contest. The problem was to write a program that
after its execution prints out its source. Of course, it was not allowed for the program to
access its source. Instead, it had to be regenerated by the program itself. Needless to
say, all spaces, new lines and other special symbols had to be printed exactly.

My solution was based on the modern at that time BASIC. Some years later, I wrote a
similar solution in Pascal.

Both solutions explore the same idea - the program contains two parts. The first one is a
list of assignments to an array. The assigned values are the source lines of the second
part. The second part should print itself (this is easy, as long as it can read itself from

12

the array). But before this, it must regenerate the first part. That's easy too because the
source of the first part be produced by the values of the same array. Of course, there
are some minor problems and you will definitely meet them if you try to solve the
problem by yourself.

Well, how to solve the same problem in Logo? What follows a solution which is based
on the same idea as my ancient BASIC and Pascal solutions. The first part is formed by
the first 7 source lines; the second part - by the next 7 lines. To make the solution
shorter, I've used a trick - I've used numbers as names of variables (that's legal in
Elica). This is done just to make the source shorter.

make 1 "'make "t 1'

make 2 "'repeat 14'

make 3 "'[if :t<8'

make 4 "' [print "make :t word "" char 39 word :(:t) char 39]'

make 5 "' [print :(:t-7)]'

make 6 "' make "t :t+1'

make 7 "']'

make "t 1

repeat 14

[if :t<8

[print "make :t word "" char 39 word :(:t) char 39]

[print :(:t-7)]

 Make "t :t+1

]

That's a nice more-than-300-(including-spaces)-characters-long Logo solution. I think
there is no need to show the result of the execution. It is the same as the text above
except for the bold face and color formatting.

But it raises a question. Is there a shorter solution? Definitely, we can easily get a
shorter one by removing all unnecessary spaces from the source and using the short
names of the commands. But that's not the goal. There is one interesting command
(and function) in Logo. It is called run. Maybe with the help of run we might be able to
find an entirely new solution?

Fortunately, the answer of this question is positive. There is a solution of only 70
characters:

make "a [print " make " " " a : a word char 10 " run " : " a]

run : a

Again the program contains two parts - the first one contains an assignment, and the
second one executes the assigned value. The key factor here is that the assigned value
prints the entire program by self-referring. It uses itself to print itself

13

Note: Do not let the spaces to confuse you. The MAKE statement is the same as this
one:

make "a [print "make "" "a :a word char 10 "run ": "a]

but because PRINT inserts spaces between printed values, we need to provide the
source with spaces too.

This resemblance to recursion makes me feel that we might like a new discount. What
about 51 characters? Here it is the next version:

make "a [print " make " " " a : a char 44 " a] , a

Here we have almost the same idea, but instead of running the contents of variable a it
is executed as if it is a procedure. Thus we get rid of run. I'm a little bit sad because
we've used run to reach a better solution and then we abandoned it.

Want a shorter Logo solution? What about 40 characters? 30? Well, let this be your
homework if you are really interested and want to give it a try. Try to find a solution
which is less than 30 characters long. As a hint I can say that there must be 4 or less
occurrences of double quotes " and at most one occurrence of colon :.

5. Noitcudortni

No, this word is not wrong, although my spell-checkers spell on me that it is. In fact, it is
the reversed writing of "introduction". I'm not able to decide how to title this final section.
Definitely it is not a summary. It is not a conclusion either. Maybe it is the moral of the
whole story?

Trying to show the very Logo way is not easy. There are many ways of programming for
those of us who use Logo. If we need we can use it to write programs the C/Pascal way.
If we need we can use it to write programs the Lisp way. And of course the best is if we
use Logo to write programs the Logo way.

If we imagine the different ways of programming as paths, then the very Logo way does
not map to any of them, because it is the power and the freedom to choose any way.
Thus we get the flexibility to manoeuvre the way we want, not being obstructed by the
landscape.

Although I talk a lot about the very Log way, I still think I'm on my first steps on this way.
It is not so important what is the position. What matters is the heading.

We, the Logo community of users and developers have the responsibility and the
pleasure to invent the very Logo way and to build it … in the very Logo way.

Volunteers are welcome.

